a2 United States Patent

Herman

US009456044B2

US 9,456,044 B2
*Sep. 27, 2016

(10) Patent No.:
45) Date of Patent:

(54)
(71)

(72)
(73)

")

@
(22)
(65)

(63)

(60)

(1)

(52)

(58)

BUSINESS NETWORKING INFORMATION

FEED ALERTS

Applicant: salesforce.com, inc., San Francisco, CA
(US)

Inventor: Bradley Herman, San Mateo, CA (US)

Assignee: salesforce.com, inc., San Francisco, CA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 228 days.
This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/152,211

Filed: Jan. 10, 2014

Prior Publication Data

US 2014/0129678 Al May 8, 2014
Related U.S. Application Data

Continuation of application No. 12/973,553, filed on
Dec. 20, 2010, now Pat. No. 8,661,076.

Provisional application No. 61/385,916, filed on Sep.
23, 2010.

Int. CL.
GO6F 15/16 (2006.01)
GO6F 15/173 (2006.01)
(Continued)
U.S. CL
CPC ... HO4L 67/26 (2013.01); GO6F 17/30516

(2013.01); HO4L 63/029 (2013.01); HO4L
69/16 (2013.01)

Field of Classification Search
CPC ... HO4L 67/04, HO4L 67/02; HO4L 67/10;
HO4L 67/18;, HO4L 67/26; HO4L 67/28;
HO4L 67/34; HO4L 67/146; HO4L 67/237,
HO4L 67/1095; HO4L 67/2809; HO4L 63/029;
HO4L 69/16

USPC ... 709/203, 206, 217-219, 224, 228, 238;

705/27, 319
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,577,188 A
5,608,872 A

11/1996 Zhu
3/1997 Schwartz et al.

(Continued)
OTHER PUBLICATIONS

“Google Plus Users”, Google+Ripples, Oct. 31, 2011 [retrieved on
Feb. 21, 2012 from Internet at http://www.googleplusers.com/
google-ripples.html], 3 pages.

(Continued)

Primary Examiner — Farzana Huq
(74) Attorney, Agent, or Firm — Weaver Austin Villeneuve
& Sampson LLP

&7

Various embodiments described or referenced herein are
directed to different devices, methods, systems, and com-
puter products for providing information external to an
organization in an information feed. A message may be
received from an information service provider in accordance
with a previously defined request. The defined request may
include one or more parameters specifying requested data.
The message may include data provided in accordance with
the one or more parameters. The data in the message may be
processed to create a data object. The data object may
include at least a portion of the data provided in accordance
with the one or more parameters. The data object may be
stored in a database. The data object may then be provided
for display on a display device in an information feed
associated with the record.

ABSTRACT

20 Claims, 30 Drawing Sheets

2 Tonant Spacs
Tenant Data

Application MetaData

25

Tenant DB

Application Setup
Mechanism 136
Roumes 136

Tenant Management

System
Process 18
102

PL/SOQL

Tenant | Tenant 2 Tenant N
Process || Process Process
104 28

[API 132

ul 130

\npui Sys!em Output
System 120

Processor]
System 12A Systsm 125

US 9,456,044 B2

Page 2
(51) Int. CL 6,907,566 Bl 6/2005 McElfresh et al.
G060 99/00 2006.01 7,062,502 Bl 6/2006 Kesler
H04% 20/08 (2006 01) 7,069,231 Bl 6/2006 Cinarkaya et al.
(2006.01) 7.069.497 Bl 6/2006 Desai
GOGF 17/30 (2006.01) 7,100,111 B2 8/2006 McElfresh et al.
HO4L 29/06 (2006.01) 7,181,758 Bl 2/2007 Chan
7,269,590 B2 9/2007 Hull et al.
. 7,289,976 B2 10/2007 Kihneman et al.
(56) References Cited 7340411 B2 3/2008 Cook
7356482 B2 4/2008 Frankland et al.
U.S. PATENT DOCUMENTS 7373,599 B2 5/2008 McElfresh et al.
5,649,104 A 7/1997 Carleton et al. 7,401,094 Bl 772008 Kesler
5715450 A 2/1998 Ambrose et al 7,406,501 B2 772008 Szeto et al.
5761419 A 6/1998 Schwartz o al. 7412455 B2 8/2008 Dillon
TR ooy Schwartz o 4 7454,500 B2 11/2008 Boulter et al.
5821937 A 10/1998 Tonelli et al. ;ggg;gg gé %883 Eﬁﬁ‘
g’g%gég i %333 E‘.’ne“‘ :faL 7,599.935 B2 10/2009 La Rotonda ef al.
073, im et al. 7,603,331 B2 10/2009 Tuzhilin et al.
Toexasg A OIo%S Comukong et al. 7603483 B2 10/2009 Psounis et al.
2’323’22 i }%ggg I(\:I;*;f:nftefél 7,620,655 B2 11/2009 Larsson et al.
6092083 A 72000 Brodersen et al. Joas. 22 B2 12000 Weyer et al
6,161,149 A 12/2000 Achacoso et al. e
6.160.534 Bl 12001 Rafiel et al 7,698,160 B2 4/2010 Beaven et al.
6.178.425 Bl 1/2001 Brodersen et al. 7,730,478 B2 62010 Weissman
! 7747648 Bl 6/2010 Kraft et al.
S80I B 22001 Lim et al 7,779,039 B2 82010 Weissman et al.
6216135 Bl 4/2001 Brodersen et al. 7,779,475 B2 8/2010 Jakobson et al
g oersen <t & 7.827.208 B2 11/2010 Bosworth et al.
g%gg’g% gi 2/388} $3Zh‘i‘1’$n et al. 7.853.881 Bl 12/2010 Assal et al.
6.266.669 Bl 7/2001 Brodersen et al. g’ggg’ggg g% gggﬂ %‘ﬁk;berg ctal.
6,288,717 Bl 9/2001 Dunkle 8014943 B2 92011 Jakobson
6,295,530 Bl 9/2001 Ritchie et al. e
6324568 Bl 11/2001 Diec et al 8,015,495 B2 9/2011 Achacoso et al.
6324.693 Bl 11/2001 Brodersen et al. 8,032,097 B2 1072011 Jakobson
032409 Bl 1W2001 Broderse 8.073.850 Bl 12/2011 Hubbard et al.
DAS4139 S 32002 Feldeamp et al. 8,082,301 B2 12;2011 Ahlgren et al.
6,367.077 Bl 4/2002 Brodersen et al. 8095413 Bl /2012 Beaven
6.393.605 Bl 52002 Loomans 8,095,531 B2 1/2012 Weissman et al.
6405220 Bl 6/2002 Brodersen et al. 8,095,594 B2 1/2012 Beaven ef al.
6.411.049 Bl 6/2002 Schaffer 8,103,611 B2 1/2012 Tuzhilin et al.
6434550 Bl /2002 Warner et al. g’égg’gég g% ggg}% %Zﬁ}én ot al
6,446,089 Bl 9/2002 Brodersen et al. 500 ¢
| 8209333 B2 6/2012 Hubbard et al.
2’233’382 g} iéggg E:)l(s)inans 8.275.836 B2 9/2012 Beaven et al.
6553363 B2 42003 Ambrose et al. SUSAILl Be 9013 Framkland et al
6,560,461 Bl 5/2003 Fomukong et al. L on
6.574.635 B2 6/2003 Staub 1 8,490,025 B2 7/2013 Jakobson et al.
274, ’ tauber et ;11 8,504,945 B2 872013 Jakobson et al.
GoTnise Db 2003 Tuang ef al. 8,510,045 B2 82013 Rueben et al.
g’ggf"?iﬁ; gé 2/3883 %.“ et a 8.510,664 B2 82013 Rucben et al.
LA, ¢ 1m et i 8,566,301 B2 10/2013 Rueben et al.
g’ggg’}gg g% géggg E;ceft;ll~ 8,646,103 B2 2/2014 Jakobson et al.
609, L 8.661.076 B2 2/2014 Herman
g’gﬁ’gg‘z‘ g} 1%883 Effi’i'ﬁfr et al. 2001/0044791 Al 112001 Richter et al.
6.665.648 B2 12/2003 Brodersen et al. 2002/0072951 AL 672002 Tec ct al.
| ! 2002/0082892 Al 6/2002 Raffel et al.
g’ggj’ggg gé 1%882 VBVarcfl‘er et al. | 2002/0129352 Al 9/2002 Brodersen et al.
0% y rg ersen et al. | 2002/0140731 Al 10/2002 Subramaniam et al.
g’;;"ggg gi 2/3883 IS(u fimamamlet” 2002/0143997 Al 10/2002 Huang et al.
s Bl 45004 Saéc our et al. : 2002/0162090 Al 10/2002 Parnell et al.
2148, f u mmamamf”~ 2002/0165742 Al 11/2002 Robbins
g’;g’ggg gi ‘5‘/3883 %&’;ﬁgssgztal 2002/0194112 AL* 12/2002 dePinto GO6Q 10/063112
732, : 705/37
6,732,100 Bl 5/2004 Brodersen et al.
6.732,111 B2 5/2004 Brodersen et al. 2003/0004971 AL 172003 Giong
| ¢ | 2003/0018705 Al 1/2003 Chen et al.
2’32‘3"221 g% %883]ng ersen et al. . 2003/0018830 Al 1/2003 Chen et al.
6763501 BL 72004 Zlﬁ mmalmam et al. 2003/0066031 Al 4/2003 Laane et al.
6765904 B2 712004 K.“ et al. 2003/0066032 Al 4/2003 Ramachandran et al.
6771229 Bl 82004 AH}? ¢ al 2003/0069936 Al 4/2003 Warner et al.
6757383 B2 82004 sgbfzfriz(flizmaét al 2003/0070000 Al 4/2003 Coker et al.
0804330 Bl 10004 Tomsamio) : 2003/0070004 Al 4/2003 Mukundan et al.
6326565 B2 11/2004 Ritchic of al. 2003/0070005 Al 4/2003 Mukundan et al.
6,826,582 Bl 11/2004 Chatterjee ef al. 2003/0074418 Al 4/2003 Coker et al.
6,826,745 B2 11/2004 Coker et al. 2003/0120675 Al 6/2003 Stauber et al.
6.829.655 Bl 122004 Huang et al. 2003/0151633 Al 82003 George et al.
6,842,748 Bl 1/2005 Warner et al. 2003/0159136 Al 82003 Huang et al.
6,850,895 B2 2/2005 Brodersen et al. 2003/0187921 Al 10/2003 Diec et al.
6,850,049 B2 2/2005 Warner et al. 2003/0189600 Al 10/2003 Gune et al.

US 9,456,044 B2

Page 3
(56) References Cited 2009/0100342 A1 4/2009 Jakobson
2009/0162824 Al 6/2009 Heck
U.S. PATENT DOCUMENTS 2009/0177744 Al 7/2009 Marlow et al.
2010/0131604 Al* 5/2010 Portilla G06Q 10/107
2003/0204427 Al 10/2003 Gune et al. 709/206
2003/0206192 Al 11/2003 Chen et al. 2011/0218958 Al 9/2011 Warshavsky et al.
2003/0225730 Al 12/2003 Warner et al. 2011/0247051 A1 10/2011 Bplumulla et al.
2004/0001092 Al 1/2004 Rothwein et al. 2012/0042218 Al 2/2012 Cinarkaya et al.
2004/0010489 Al 1/2004 Rio et al. 2012/0079004 Al 3/2012 Herman
2004/0015981 Al 1/2004 Coker et al. 2012/0215773 Al 8/2012 Si et al.
2004/0027388 Al 2/2004 Berg et al. 2012/0233137 Al 9/2012 Jakobson et al.
2004/0128001 Al 7/2004 Levin et al. 2012/0290407 Al 11/2012 Hubbard et al.
2004/0186860 Al 9/2004 Lee et al. 2013/0024504 Al 1/2013 Wu
2004/0193510 Al 9/2004 Catahan et al. 2013/0212497 Al 8/2013 Zelenko et al.
2004/0199489 Al 10/2004 Barnes-Leon et al. 2013/0218948 Al 82013 Jakobson
2004/0199536 Al 10/2004 Barnes Leon et al. 2013/0218949 Al 82013 Jakobson
2004/0199543 Al 10/2004 Braud et al. 2013/0218966 Al 82013 Jakobson
2004/0249854 Al 12/2004 Barnes-Leon et al. 2013/0247216 Al 9/2013 Cinarkaya et al.
2004/0260534 Al 12/2004 Pak et al. 2014/0359537 Al 12/2014 Jackobson et al.
2004/0260659 Al 12/2004 Chan et al. 2015/0006289 Al 1/2015 Jakobson et al.
2004/0268299 Al 12/2004 l.ei et al. 2015/0007050 Al 1/2015 Jakobson et al.
2005/0050555 Al 3/2005 Exley et al. 2015/0095162 Al 4/2015 Jakobson et al.
2005/0091098 Al 4/2005 Brodersen et al. 2015/0142596 Al 5/2015 Jakobson et al.
2006/0010125 Al* 1/2006 Beartusk G06Q 10/10 2015/0172563 Al 6/2015 Jakobson et al.
N ‘
2006/0167704 Al 7/2006 Nicholls G06Q 1700/(5)/67323 OTHER PUBLICATIONS
N .
T AL B 00T ROl HO4L 67002 (5 Office Action mailed Apr. 1, 2013 for U.S. Appl. No.
2008/0249972 Al 10/2008 Dillon 12/973,553.
2008/0263439 Al* 10/2008 Oz ..cccoovvvvvevrnennn. GO6F 17/3089 Notice of Allowance for U.S. Appl. No. 12/973,553 mailed Oct. 11,
715/235 2013.

2009/0030906 Al* 1/2009 Doshi GO6F 17/30575
2009/0063415 A1 3/2009 Chatfield et al. * cited by examiner

U.S. Patent Sep. 27, 2016 Sheet 1 of 30 US 9,456,044 B2

22 24
/—Q /‘C s 26
N] —
Tenant System Program
Data Data Code
Storage Storage
— — (17 / 28
. 18 Processor
System Process Space
Application
Platform 20\
Network System 16
Interface

Environment
10

User User
System | s orrsse e System
12 12
®_10

Fig. 1A

U.S. Patent Sep. 27, 2016 Sheet 2 of 30 US 9,456,044 B2

- 22
— I T
\ /_ 23

—
112

| Tenant Space

Tenant Data —- 114

25

Application Setup
Mechanism 138

—1—i_ 118

Application MetaData

Tenant DB

Tenant Management
Process
110

System
Process
102

> 18

Save
Routines 136

PL/SOQL
134

Tenant 1 || Tenant 2 Tenant N
Process || Process Process

N Y104 ——/ 28

Ul 130

18
AP1 132

Appl.
Server

Appl.
Server

Environment
10

12

12

12

Processor
System 12A

Memory
System 12B

Input System
12C

Output
System 12D

Fig. 1B

U.S. Patent Sep. 27, 2016 Sheet 3 of 30 US 9,456,044 B2

220 PO 71,240
C:‘ 232
ore 228
Switch 1\ Y g /—248

252
5 g 256
; “ouitch3 WA
s %V “), Database
\ Load \ A 20f2 Storage

_/ ZB= Balancer Active DB Switch —
212~ Edge o 224 (_ Fiewal (1or2)
Router 2 Switch 2 Swifch 4 ~—236
: 244 *_
Pod V. 200
Fig. 2A
236
Q/ 244
. Pod
264 Switch 4
s 87
)/ 268—) % !
Content 7 oga | %‘
Batch "&. ‘ 282 p :ﬂ\pp
Servers =3/ 8 (—280 & Servers
Content lg | 286 - /| Y
S T T
’ i sl
l\ J/‘ 290 Servers query E&'i A?S Servers
Servers
Database Flle Force Servers \‘
Servers 290
Instance \ ”\ /]
\ 292 o W
202~ p—— cines
\
Indexers
QFS

~ % *_200
Load x
NFS
Balancer F I g 8 ZB

U.S. Patent

310 ——| Database system receives a

320 ——| Database system writes new

340
\ Add feed update to feed of first

Sep. 27, 2016 Sheet 4 of 30

request to update a first record

l

data to first record

\ 4

Generate feed update

|

record

Y

Identify followers of first record

A 4

360 —

Add the feed update to a news feed of
each follower

l

Follower accesses his/her news feed
and sees the update

FIG. 3

US 9,456,044 B2

US 9,456,044 B2

Sheet 5 of 30

Sep. 27, 2016

U.S. Patent

¥ "OId

00

(1574
(4amoi04)
b 18sn puooag 9
Jasn
pI0oal 0 pooy
jO po’y __MN Mm%g
10} 189nbay & H
oLy viv gey
weysAs aseqeleq a|1j0id
oseqele(a|1§04d JaMo[|04
S
7w : o
aseqgeleq oepdn PS9} MON
pioosy | ; 008] MON
Gey LYy
piooay _. z (s)iossadoid
¢ O/l
Bjep MapN
Ji
J
0cy

L

X plooay
0} arepdn

cov
Josn jsii4

U.S. Patent

Sep. 27, 2016 Sheet 6 of 30

510 ——

Database system identifies an
action of a first user that triggers
an event

Y

Does the event qualify for a

feed update?

US 9,456,044 B2

No

Yes

Yy

530 —

| Generate feed update about the
action

Y

540 ——

Add feed update to feed of first
user

l

5650 ~

Identify followers of first user

l

560 —

Add the feed update to a news
feed of each follower

Y

570 —

Follower accesses the news
feed and sees the feed update

FIG. 5

h 4

Stop

U.S. Patent

Sep. 27, 2016 Sheet 7 of 30

Database system receives a
message associated with a user

Y

Add message to a profile (e.qg.
as a profile feed) of the user

4

630
N

Database system identifies
followers of user

l

Add the message to a news feed
of each follower

|

Follower accesses a news feed
and sees the message

A 4

Database system receives a
comment about the message

l

Add comment o the news feed
of each follower

FIG. 6

US 9,456,044 B2

»— 600

US 9,456,044 B2

Sheet 8 of 30

Sep. 27, 2016

U.S. Patent

VA

old

L M

M SRR

3

456,044 B2

b

US 9

Sheet 9 of 30

. 27,2016

Sep

U.S. Patent

8

/L

Bochehy

i) AR AN w3

oy e s ol B RICIE o

£

ORS00 DRI G e

MEZ L-Auunpiodd)

U.S. Patent Sep. 27, 2016 Sheet 10 of 30 US 9,456,044 B2
Event Object Created by Event Comment Time/
ID 911 ID 912 ID 913 1D 931 932 Date 933

6 a 10-21-2010
E1 0615 us E37 5:32 PM
E2 0489 U101 E37 .o 9-17-2010
° Event History Table 910 " Comment Table 930
Event Old value New Event Post Text Time/
ID 921 922 value 923 ID 951 052 Date 953
« « | 10-11-2010
E37 300 400 E69 4:12 PM
E37 4.23 4.10 E90 o 8-12-2010
. Field Change Table :
920 Post Table 950
User ID Object
941 ID 942 User Event
ug19 0615 ID 961 ID 962
U819 0489 ug19 E37
U719 0615 us19 E90
User Subscription U719 E37
Table 940

FIG. 9A

News Feed Table
960

U.S. Patent Sep. 27, 2016 Sheet 11 of 30 US 9,456,044 B2

'/—— 900

901 Receive one or more properties of
an object stored in the database
system

Receive one or more criteria about
which users are to automatically
follow the object

903 Determine whether the one or
\ more properties of the object
satisfy the one or more criteria for
a first user

|

904 ~ If the criteria are satisfied, the
object is associated with the first
user

FIG. 9B

U.S. Patent

1010 —| Receive data indicative of an

1030
\ Write event to an event history

Sep. 27, 2016 Sheet 12 of 30

event

Determine whether the event is
being tracked for inclusion into
feed tables

l

1040
N\

US 9,456,044 B2

table
Update field Update post
change table table

1060 —| Receive a comment for an event

/ 1050

|

and add to a comment table

FIG. 10

U.S. Patent Sep. 27, 2016 Sheet 13 of 30 US 9,456,044 B2

1110 —| Receive a query for an events
history table

1120 d Check to determine if the user
can view the record feed

|

1130 . .
\ Check field level security table to
determine whether the user can
see particular fields

1140
\ Display feed items to which the
user has access

FIG. 11

U.S. Patent

1210 Y user for an events history table

1220 — second user can see first user's

1230 -~ check on specific feed

1231 — number of matching entries from

Sep. 27, 2016 Sheet 14 of 30

Receive a query from a second

to see a first user’s profile feed

Y
Perform security check whether

profile feed

I

Perform a security

items

Y
Retrieve a predetermined

the event history table

l

US 9,456,044 B2

— 1200

1232 —_

Organize the record identifiers by type and
check whether the second can see the
record types

1233 — If can see type, then proceed to check

1234 — Use field sharing rules to determine if

1235 — Repeat steps 1231-1234 until a

l

access for specific records

l

certain fields are not viewable

l

stopping criteria is reached

FIG. 12

U.S. Patent Sep. 27, 2016 Sheet 15 of 30 US 9,456,044 B2

1310 —] Receive data indicative of an
event

|

1320 ——_ Determine objects
associated with the event

l

1330 " Determine users ;‘ollowing the
even

l

Write followers of the event along
with an event identifier to a news
feed table

|

1350 ——_| Receive a request for a
news feed from a user

|

Access news feed table and other
tables to generate feed items for
display

1340 —

1360 —

FIG. 13

U.S. Patent Sep. 27, 2016 Sheet 16 of 30 US 9,456,044 B2

1400
T

Receive one or more criteria
specifying which feed items are to be
displayed to a first user

1420 —{ Identify feed items of one or more
selected objects that match the criteria

Display the feed items that
1430 - ~ match the criteria to the first user
in the custom feed

FIG. 14

U.S. Patent Sep.

27,2016 Sheet 17 of 30

<B

usiness Networking Information
Feed Alerts Method

Receive a message relatingto a
record stored in a database

v

Identify a provider of the
message

y

Select an unparsed data block in

Y

the message

y

Parse the data block into items
having specified types

Y.

Identify a source associated with
the data block

y

US 9,456,044 B2

1502

1504

1506

1508

1510

1512

<

Is the source included on a list of

>—Yes———

Yes{

sources?
T
No 1514
v -
Create a data object based on
the items
v 1516
Do any unparsed data blocks
remain?
|
No 1518
h 4
Process the data objects
1520

Provide the data objects in an
information feed associated with
the record

Y

(Done)

U.S. Patent Sep. 27, 2016 Sheet 18 of 30 US 9,456,044 B2

Parsing Method for Business Networking
Information Feed Alerts Method

(Stat)
1602
v /.

Identify data having a specified
type in the data block

1604
v [
.| Select unprocessed data in the
g data block

1606
' /[

Record the data as an item

|
No

v f1608

Yes Do any unprocessed data in the
data block remain?

A 4

U.S. Patent

Sep. 27, 2016 Sheet 19 of 30

Signup Method for Business
Information Feed Alerts Method

(Start)

1702
v [

Receive parameters relating to a
record stored in a database

1704
v [

Receive a selection of a provider
of messages

1706
4 //—

Determine a web services end-
point for the messages

1708
\ 4 //*

Send a signup request to the
provider

1710
\ 4 f

Receive a confirmation message
from the provider

1712
¥ f

Parse the confirmation message
into items having specified types

1714
Y [/

Send a confirmation response to
the provider

1716
v [

Provide a mechanism for
canceling the signup request

US 9,456,044 B2

US 9,456,044 B2

Sheet 20 of 30

Sep. 27, 2016

U.S. Patent

US 9,456,044 B2

Sheet 21 of 30

Sep. 27, 2016

U.S. Patent

6L Bid4
0061 74

LIGLTTTN .
g3gynd

wia sjckd
"

4

U.S. Patent Sep. 27, 2016 Sheet 22 of 30 US 9,456,044 B2

frad Hanan

o R e L e e

e L

RN RN gt

044 B2

b

US 9,456

Sheet 23 of 30

. 27,2016

Sep

U.S. Patent

LZ ‘b4

US 9,456,044 B2

Sheet 24 of 30

. 27,2016

Sep

U.S. Patent

zz ‘b4
0022 7

IS

VAL SORE Aol

456,044 B2

b

US 9

Sheet 25 of 30

. 27,2016

Sep

U.S. Patent

gz ‘b4
00€e

‘paiouf an e LgE Jenonieg

1EL1 L SSU0TS 241 10 1AL A1 LSiE UI8S 1 PP SAU0IS I8 A1 10 1500 JRHRUD B ABAID v
"l oy o BULRIUSE AR UReE U REnnau AR ARas LU0 150d BRIRGD B RIRAT s 1 S Buinas
40 HUEg S acf AT HIEIUS 1y 218000 LIES LU0 peisnd 948 UL SRR B ABtuIng U U0 Ui seiidn

ve g 1eD o8 19900 ARIOMEMEY Mereriss) SIUNeIE DS UK JBHeNT Uany om BuisEs e nivi

PRS0 SRUNIS $0 saqung 1 Buningy

c0ee

mon i Lan ghbniq
mao Eamtalu T amg

SMDIOE 52 Je10n SRR BLINOD RIS JRAA BUR SSWLL DL

AP AUR LTI SLIBIE SOOI O BICLUEYS 104 SU LWt K U SRS08M YIES mEIRdas TG xog xﬁw i
SRYSGRN JUT IBIUT] SRTUNOT SR DWIDER LICUE STRMy SMEK] IBHEIET BARIaE | D B AS000T UsS
$93IN0G SABN m:zﬂ:uﬁm

FIDI0E HOtal SUaPY SeaR Sl T, AUt b sBesn afirupul noA diay o1 sundas als siay)

‘tefe Junnone g oy
m; sup Ll 210520 PO X IUNGDIE 2L (AOLED I NS a0 TIAS|D) SU0L SUDID SL) SEU

ufiis uaipe &
£ SULB] asau alzyD ued roy (S ILUEG YOI WIRIAK 58 BUI S IUN0S0E St SRen uoemdile sy

o papasu &

BDUET, 01 DISY IEUL 0 anges Ayl 2Busys S1sod d9DRYD S8 IN0I0E Sl 40; S1aky sibnog Bumanaidos g

US 9,456,044 B2

Sheet 26 of 30

. 27,2016

Sep

AR
00vZ 7N

£

U.S. Patent

R

US 9,456,044 B2

Sheet 27 of 30

Sep. 27, 2016

U.S. Patent

Gz ‘b4
0062 T

JRR T R S3neIUND

DUHE asoryusnsnn
wsogiie s

Pid e
[BURFEMAN TERETD g ponpop ey FIERTRICE TR H TR 0 S

unpe i) wapis a

Egpay soddioy sl
FRREER L YR

o

R
C AN b ST

\v TSI ERS
TR REHDIIE

[Prtic ey

SN (PSRN 5 a3 ana g paske sl

A

202z 4 AE 4

LD S BHOYYIN EL

US 9,456,044 B2

Sheet 28 of 30

Sep. 27, 2016

U.S. Patent

9z ‘Bi4
0092 A

BLeIEY SR RS

US 9,456,044 B2

Sheet 29 of 30

Sep. 27, 2016

U.S. Patent

12 "bi4
0042 7T

456,044 B2

b

Sheet 30 of 30 US 9

Sep. 27, 2016

U.S. Patent

A R I R SR, i 1 L M i
_ a0 g
fiewg idaooy, mau syl ol wWod aiBoobigddalou-suaea|fool, ppe Ing synelar 2yl asn o

LONNG SSRUPPY [IBLLT MBR JUE BAES, BLITHIND &

S R Y R

A0 BARYG S MG T 2

X0 Wod4 [leg 1de22y, aul ul wod 3bool@dédaicu-s1aeadool, apnjoy) »

: 's5E|D . ANeUD0 | Vayalfong, 8yl 85304D ! 55810 xathy, 104 o
Aaapeiboon, sy Buliawn:s AnY BLUEN B01IAIAS IBLUS, Agaokay nofiegeaing &

s|lewa Uapy a|ioog ok |B aaadal 0] STAIES el 005 a[EG B aleal]) &

ssaades ewy i) dag

apingy dnjeg

FLIBEY FAH JSRELY

US 9,456,044 B2

1
BUSINESS NETWORKING INFORMATION
FEED ALERTS

PRIORITY AND RELATED APPLICATION
DATA

This application claims priority to co-pending and com-
monly assigned U.S. patent application Ser. No. 12/973,553,
titled “BUSINESS NETWORKING INFORMATION
FEED ALERTS,” by Bradley Herman, filed on Dec. 20,
2010, which claims priority to U.S. Provisional Patent
Application No. 61/385,916, titled “BUSINESS NET-
WORKING FEED NEWS ALERTS,” by Bradley Herman,
filed on Sep. 23, 2010, both of which are hereby incorpo-
rated by reference in their entirety and for all purposes.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

TECHNICAL FIELD

The present disclosure relates generally to on-demand
services provided over a data network such as the Internet,
and more specifically to techniques for providing informa-
tion feed alerts to a client machine.

BACKGROUND

Organizations typically employ many different types of
software and computing technologies to meet their comput-
ing needs. However, installing and maintaining software on
an organization’s own computer systems may involve one or
more drawbacks. For example, when software must be
installed on computer systems within the organization, the
installation process often requires significant time commit-
ments, since organization personnel may need to separately
access each computer. Once installed, the maintenance of
such software typically requires significant additional
resources. Hach installation of the software may need to be
separately monitored, upgraded, and/or maintained. Further,
organization personnel may need to protect each installed
piece of software against viruses and other malevolent code.
Given the difficulties in updating and maintaining software
installed on many different computer systems, it is common
for software to become outdated. Also, the organization will
likely need to ensure that the various software programs
installed on each computer system are compatible. Compat-
ibility problems are compounded by frequent upgrading,
which may result in different versions of the same software
being used at different computer systems in the same orga-
nization.

Accordingly, organizations increasingly prefer to use on-
demand services accessible via the Internet rather than
software installed on in-house computer systems. On-de-
mand services, often termed “cloud computing” services,
take advantage of increased network speeds and decreased
network latency to provide shared resources, software, and
information to computers and other devices upon request.
Cloud computing typically involves over-the-Internet pro-
vision of dynamically scalable and often virtualized

25

35

40

45

50

2

resources. Technological details can be abstracted from the
users, who no longer have need for expertise in, or control
over, the technology infrastructure “in the cloud” that sup-
ports them.

BRIEF DESCRIPTION OF THE DRAWINGS

The included drawings are for illustrative purposes and
serve only to provide examples of possible structures and
process steps for the disclosed inventive systems and meth-
ods for providing information feed alerts to clients. These
drawings in no way limit any changes in form and detail that
may be made to embodiments by one skilled in the art
without departing from the spirit and scope of the disclosure.

FIG. 1A illustrates a block diagram of an example of an
environment wherein an on-demand database service might
be used.

FIG. 1B illustrates a block diagram of an embodiment of
elements of FIG. 1A and various possible interconnections
between these elements.

FIG. 2A shows a system diagram 200 illustrating archi-
tectural components of an on-demand service environment,
in accordance with one embodiment.

FIG. 2B shows a system diagram further illustrating
architectural components of an on-demand service environ-
ment, in accordance with one embodiment.

FIG. 3 is a flowchart of a method 300 for tracking updates
to a record stored in a database system according to one or
more embodiments.

FIG. 4 is a block diagram of components of a database
system performing a method for tracking an update to a
record according to one or more embodiments.

FIG. 5 is a flowchart of a method 500 for tracking actions
of a user of a database system according to one or more
embodiments.

FIG. 6 is a flowchart of a method 600 for creating a news
feed from messages created by a first user about a record or
another user according to one or more embodiments.

FIG. 7 shows an example of a group feed on a group page
according to one or more embodiments.

FIG. 8 shows an example of a record feed containing a
feed tracked update, post, and comments according to one or
more embodiments.

FIG. 9A shows a plurality of tables that may be used in
tracking events and creating feeds according to one or more
embodiments.

FIG. 9B shows a flowchart illustrating a method 900 for
automatically subscribing a user to an object in a database
system according to embodiments.

FIG. 10 is a flowchart of a method 1000 for saving
information to feed tracking tables according to one or more
embodiments.

FIG. 11 is a flowchart of a method 1100 for reading a feed
item as part of generating a feed for display according to one
or more embodiments.

FIG. 12 is a flowchart of a method 1200 for reading a feed
item of a profile feed for display according to one or more
embodiments.

FIG. 13 is a flowchart of a method 1300 of storing event
information for efficient generation of feed items to display
in a feed according to one or more embodiments.

FIG. 14 is a flowchart of a method 1400 for creating a
custom feed for users of a database system using filtering
criteria according to embodiments.

FIG. 15 shows a flow diagram of a method 1500 for
providing information feed alerts, performed in accordance
with one embodiment.

US 9,456,044 B2

3

FIG. 16 shows a flow diagram of a method 1600 for
parsing data in a message, performed in accordance with one
embodiment.

FIG. 17 shows a flow diagram of a method 1700 for
signing up to receive information feed alerts, performed in
accordance with one embodiment.

FIGS. 18-28 show images of graphical user interfaces
presented in a web browser at a client machine, in accor-
dance with one or more embodiments.

DETAILED DESCRIPTION

Examples of systems, apparatus, and methods according
to the disclosed embodiments are described in this section.
These examples are being provided solely to add context and
aid in the understanding of the disclosed embodiments. It
will thus be apparent to one skilled in the art that imple-
mentations may be practiced without some or all of these
specific details. In other instances, well known process/
method steps have not been described in detail in order to
avoid unnecessarily obscuring embodiments. Other applica-
tions are possible, such that the following examples should
not be taken as definitive or limiting either in scope or
setting.

In the following detailed description, references are made
to the accompanying drawings, which form a part of the
description and in which are shown, by way of illustration,
specific embodiments. Although these embodiments are
described in sufficient detail to enable one skilled in the art
to practice the disclosed implementations, it is understood
that these examples are not limiting, such that other embodi-
ments may be used and changes may be made without
departing from their spirit and scope. For example, the
blocks of methods shown and described herein are not
necessarily performed in the order indicated. It should also
be understood that the methods may include more or fewer
blocks than are indicated. In some implementations, blocks
described herein as separate blocks may be combined.
Conversely, what may be described herein as a single block
may be implemented in multiple blocks.

Various embodiments described or referenced herein are
directed to different methods, apparatus, systems, and com-
puter program products for providing alerts using an infor-
mation feed in an on-demand service environment. In some
embodiments, the disclosed methods, apparatus, systems,
and computer program products may be configured or
designed for use in a multi-tenant database environment.

Providing information external to an organization to per-
sons in the organization, as described in greater detail below,
allows a person to be aware of events external to the
organization. These events, for example, may affect the
operations or future plans of the organization.

In some disclosed embodiments, a provider captures
ongoing news events or other information external to the
organization. The provider communicates these news events
or other information to an on-demand service provider
utilized by the organization.

A provider, for example, may be a third party aggregator
or other Internet service that compiles information available
on the Internet regarding information of interest to the
organization. On a regular basis, the provider may send a
message containing, for example, news stories found on the
Internet that match a search term of interest to the organi-
zation. The on-demand service provider receives the mes-
sage and parses the message to separate the news stories.
Then, a data object is created that may include the sources
of the news stories, the authors of the news stories, and the

10

15

20

25

30

35

40

45

50

55

60

65

4

publication dates of the news stories. This object may then
be included in the information feed in the on-demand
database service environment.

These and other embodiments may be implemented by
various types of hardware, software, firmware, etc. For
example, some embodiments may be implemented, at least
in part, by machine-readable media that include program
instructions, state information, etc., for performing various
services and operations described herein. Examples of pro-
gram instructions include both machine code, such as pro-
duced by a compiler, and files containing higher-level code
that may be executed by the computer using an interpreter.
Examples of machine-readable media include, but are not
limited to, magnetic media such as hard disks, floppy disks,
and magnetic tape; optical media such as CD-ROM disks;
magneto-optical media; and hardware devices that are spe-
cially configured to store program instructions, such as
read-only memory devices (“ROM”) and random access
memory (“RAM?”). These and other features and benefits of
the disclosed embodiments will be described in more detail
below with reference to the associated drawings.

The term “multi-tenant database system” can refer to
those systems in which various elements of hardware and
software of the database system may be shared by one or
more customers. For example, a given application server
may simultaneously process requests for a great number of
customers, and a given database table may store rows for a
potentially much greater number of customers. The term
“query plan” generally refers to one or more steps used to
access information in a database system.

A “user profile” or “user’s profile” is configured to store
and maintain data about the user of the database system. The
data can include general information, such as title, phone
number, a photo, a biographical summary, and a status (e.g.,
text describing what the user is currently doing). As men-
tioned below, the data can include messages created by other
users. Where there are multiple tenants, a user is typically
associated with a particular tenant. For example, a user
could be a salesperson of a company that is a tenant of the
database system that provides a database service.

The term “record” generally refers to a data entity, such as
an instance of a data object created by a user of the database
service, for example, about a particular (actual or potential)
business relationship or project. The data object can have a
data structure defined by the database service (a standard
object) or defined by a subscriber (custom object). For
example, a record can be for a business partner or potential
business partner (e.g. a client, vendor, distributor, etc.) of the
user, and can include an entire company, subsidiaries, or
contacts at the company. As another example, a record can
be a project that the user is working on, such as an oppor-
tunity (e.g. a possible sale) with an existing partner, or a
project that the user is trying to get. In one embodiment
implementing a multi-tenant database, all of the records for
the tenants have an identifier stored in a common table. A
record has data fields that are defined by the structure of the
object (e.g. fields of certain data types and purposes). A
record can also have custom fields defined by a user. A field
can be another record or include links thereto, thereby
providing a parent-child relationship between the records.

The term “feed” includes a combination (e.g. a list) of
feed items or entries with various types of information and
data. Such feed items can be stored and maintained in one
or more database tables, which can be accessed to retrieve
relevant information to be presented as part of a displayed
feed. The term “feed item” (or feed element) refers to
information about a user (“profile feed”) of the database or

US 9,456,044 B2

5

about a record (“record feed”) in the database. A user
following the user or record can receive the associated feed
items. In some implementations, the feed items from all of
the followed users and records can be combined into a single
feed for the user.

As examples, a feed item can be a message, such as a
user-generated post of text data, and a feed tracked update to
a record or profile, such as a change to field of the record.
A feed can be a combination of messages and feed tracked
updates. Messages include text created by a user, and may
include other data as well. Examples of messages include
posts, user status updates, and comments. Messages can be
created for a user’s profile or for a record. Posts can be
created by various users, potentially any user, although some
restrictions can be applied. As an example, posts can be
made to a wall section of a user’s profile (which can include
a number of recent posts) or a section of a record that
includes multiple posts. The posts can be organized in
chronological order when displayed in a graphical user
interface (GUI) as part of a feed. In contrast to a post, a user
status update changes a status of a user and can be made by
that user or an administrator. Other similar sections of a
user’s profile can also include an “About” section. A record
can also have a status, whose update can be provided by an
owner of the record or other users having suitable write
access permissions to the record. The owner can be a single
user, multiple users, or a group. In one embodiment, there is
only one status for a record. In one embodiment, a comment
can be made on any feed item. In another embodiment,
comments are organized as a list explicitly tied to a particu-
lar feed tracked update, post, or status update. In this
embodiment, comments may not be listed in the first layer
(in a hierarchal sense) of feed items, but listed as a second
layer branching from a particular first layer feed item.

A “feed tracked update,” also referred to herein as a “feed
update,” generally refers to data representing an event, and
can include text generated by the database system in
response to the event, to be provided as one or more feed
items for possible inclusion in one or more feeds. In one
embodiment, the data can initially be stored, and then the
database system can later use the data to create text for
describing the event. Both the data and/or the text can be a
feed tracked update, as used herein. In various embodi-
ments, an event can be an update of a record and/or can be
triggered by a specific action by a user. Which actions trigger
an event can be configurable. Which events have feed
tracked updates created and which feed updates are sent to
which users can also be configurable. Messages and feed
updates can be stored as a field or child object of the record.
For example, the feed can be stored as a child object of the
record.

A “group” is generally a collection of users. In some
aspects, the group may be defined as users with a same or
similar attribute, or by membership. In one embodiment, a
“group feed” includes any feed item about any user in a
group. In another embodiment, the group feed includes feed
items that are about the group as a whole. In one imple-
mentation, the feed items for a group are only posts and
comments.

An “entity feed” or “record feed” generally refers to a
feed of feed items about a particular record in the database,
such as feed tracked updates about changes to the record and
posts made by users about the record. An entity feed can be
composed of any type of feed item. Such a feed can be
displayed on a page (e.g. a web page) associated with the
record (e.g. a home page of the record). As used herein, a
“profile feed” is a feed of feed items about a particular user.

10

15

20

25

30

35

40

45

50

55

60

65

6

In one embodiment, the feed items for a profile feed are
posts and comments that other users make about or send to
the particular user, and status updates made by the user. Such
a profile feed can be displayed on a page associated with the
particular user. In another embodiment, feed items in a
profile feed could include posts made by the particular user
and feed tracked changes (feed tracked updates) initiated
based on actions of the particular user.

1. General Overview

Systems, apparatus, and methods are provided for imple-
menting enterprise level social and business information
networking. Such embodiments can provide more efficient
use of a database system. For instance, a user of a database
system may not easily know when important information in
the database has changed, e.g., about a project or client.
Embodiments can provide feed tracked updates about such
changes and other events, thereby keeping users informed.

By way of example, a user can update a record (e.g. an
opportunity such as a possible sale of 1000 computers).
Once the update has been made, a feed tracked update about
the update can then automatically be sent (e.g. in a feed) to
anyone subscribing to the opportunity or to the user. Thus,
the user does not need to contact a manager regarding the
change in the opportunity, since the feed tracked update
about the update is sent via a feed right to the manager’s feed
page (or other page).

Next, mechanisms and methods for providing systems
implementing enterprise level social and business informa-
tion networking will be described with reference to example
embodiments. First, an overview of an example database
system is described, and then examples of tracking events
for a record, actions of a user, and messages about a user or
record are described. Various embodiments about the data
structure of feeds, customizing feeds, user selection of
records and users to follow, generating feeds, and displaying
feeds are also described.

II. System Overview

FIG. 1A illustrates a block diagram of an environment 10
wherein an on-demand database service might be used.
Environment 10 may include user systems 12, network 14,
system 16, processor system 17, application platform 18,
network interface 20, tenant data storage 22, system data
storage 24, program code 26, and process space 28. In other
embodiments, environment 10 may not have all of the
components listed and/or may have other elements instead
of, or in addition to, those listed above.

Environment 10 is an environment in which an on-
demand database service exists. User system 12 may be any
machine or system that is used by a user to access a database
user system. For example, any of user systems 12 can be a
handheld computing device, a mobile phone, a laptop com-
puter, a work station, and/or a network of computing
devices. As illustrated in FIG. 1A (and in more detail in FIG.
1B) user systems 12 might interact via a network 14 with an
on-demand database service, which is system 16.

An on-demand database service, such as system 16, is a
database system that is made available to outside users that
do not need to necessarily be concerned with building and/or
maintaining the database system, but instead may be avail-
able for their use when the users need the database system
(e.g., on the demand of the users). Some on-demand data-
base services may store information from one or more
tenants stored into tables of a common database image to
form a multi-tenant database system (MTS). Accordingly,
“on-demand database service 16” and “system 16 will be
used interchangeably herein. A database image may include
one or more database objects. A relational database man-

US 9,456,044 B2

7

agement system (RDBMS) or the equivalent may execute
storage and retrieval of information against the database
object(s). Application platform 18 may be a framework that
allows the applications of system 16 to run, such as the
hardware and/or software, e.g., the operating system. In an
embodiment, on-demand database service 16 may include
an application platform 18 that enables creation, managing
and executing one or more applications developed by the
provider of the on-demand database service, users accessing
the on-demand database service via user systems 12, or third
party application developers accessing the on-demand data-
base service via user systems 12.

The users of user systems 12 may differ in their respective
capacities, and the capacity of a particular user system 12
might be entirely determined by permissions (permission
levels) for the current user. For example, where a salesper-
son is using a particular user system 12 to interact with
system 16, that user system has the capacities allotted to that
salesperson. However, while an administrator is using that
user system to interact with system 16, that user system has
the capacities allotted to that administrator. In systems with
a hierarchical role model, users at one permission level may
have access to applications, data, and database information
accessible by a lower permission level user, but may not
have access to certain applications, database information,
and data accessible by a user at a higher permission level.
Thus, different users will have different capabilities with
regard to accessing and modifying application and database
information, depending on a user’s security or permission
level, also called authorization.

Network 14 is any network or combination of networks of
devices that communicate with one another. For example,
network 14 can be any one or any combination of a LAN
(local area network), WAN (wide area network), telephone
network, wireless network, point-to-point network, star net-
work, token ring network, hub network, or other appropriate
configuration. As the most common type of computer net-
work in current use is a TCP/IP (Transter Control Protocol
and Internet Protocol) network, such as the global internet-
work of networks often referred to as the “Internet” with a
capital “I,” that network will be used in many of the
examples herein. However, it should be understood that the
networks that the present invention might use are not so
limited, although TCP/IP is a frequently implemented pro-
tocol.

User systems 12 might communicate with system 16
using TCP/IP and, at a higher network level, use other
common Internet protocols to communicate, such as HTTP,
FTP, AFS, WAP, etc. In an example where HTTP is used,
user system 12 might include an HTTP client commonly
referred to as a “browser” for sending and receiving HTTP
messages to and from an HTTP server at system 16. Such an
HTTP server might be implemented as the sole network
interface between system 16 and network 14, but other
techniques might be used as well or instead. In some
implementations, the interface between system 16 and net-
work 14 includes load sharing functionality, such as round-
robin HTTP request distributors to balance loads and dis-
tribute incoming HTTP requests evenly over a plurality of
servers. At least as for the users that are accessing that
server, each of the plurality of servers has access to the
MTS’ data; however, other alternative configurations may
be used instead.

In one embodiment, system 16, shown in FIG. 1A,
implements a web-based customer relationship management
(CRM) system. For example, in one embodiment, system 16
includes application servers configured to implement and

10

15

20

25

30

35

40

45

50

55

60

65

8

execute CRM software applications as well as provide
related data, code, forms, webpages and other information to
and from user systems 12 and to store to, and retrieve from,
a database system related data, objects, and Webpage con-
tent. With a multi-tenant system, data for multiple tenants
may be stored in the same physical database object, how-
ever, tenant data typically is arranged so that data of one
tenant is kept logically separate from that of other tenants so
that one tenant does not have access to another tenant’s data,
unless such data is expressly shared. In certain embodi-
ments, system 16 implements applications other than, or in
addition to, a CRM application. For example, system 16 may
provide tenant access to multiple hosted (standard and
custom) applications, including a CRM application. User (or
third party developer) applications, which may or may not
include CRM, may be supported by the application platform
18, which manages creation, storage of the applications into
one or more database objects and executing of the applica-
tions in a virtual machine in the process space of the system
16.

One arrangement for elements of system 16 is shown in
FIG. 1A, including a network interface 20, application
platform 18, tenant data storage 22 for tenant data 23, system
data storage 24 for system data 25 accessible to system 16
and possibly multiple tenants, program code 26 for imple-
menting various functions of system 16, and a process space
28 for executing MTS system processes and tenant-specific
processes, such as running applications as part of an appli-
cation hosting service. Additional processes that may
execute on system 16 include database indexing processes.

Several elements in the system shown in FIG. 1A include
conventional, well-known elements that are explained only
briefly here. For example, each user system 12 could include
a desktop personal computer, workstation, laptop, PDA, cell
phone, or any wireless access protocol (WAP) enabled
device or any other computing device capable of interfacing
directly or indirectly to the Internet or other network con-
nection. User system 12 typically runs an HTTP client, e.g.,
a browsing program, such as Microsoft’s Internet Explorer
browser, Netscape’s Navigator browser, Opera’s browser, or
a WAP-enabled browser in the case of a cell phone, PDA or
other wireless device, or the like, allowing a user (e.g.,
subscriber of the multi-tenant database system) of user
system 12 to access, process and view information, pages
and applications available to it from system 16 over network
14. Each user system 12 also typically includes one or more
user interface devices, such as a keyboard, a mouse, track-
ball, touch pad, touch screen, pen or the like, for interacting
with a graphical user interface (GUI) provided by the
browser on a display (e.g., a monitor screen, LCD display,
etc.) in conjunction with pages, forms, applications and
other information provided by system 16 or other systems or
servers. For example, the user interface device can be used
to access data and applications hosted by system 16, and to
perform searches on stored data, and otherwise allow a user
to interact with various GUI pages that may be presented to
a user. As discussed above, embodiments are suitable for use
with the Internet, which refers to a specific global internet-
work of networks. However, it should be understood that
other networks can be used instead of the Internet, such as
an intranet, an extranet, a virtual private network (VPN), a
non-TCP/IP based network, any LAN or WAN or the like.

According to one embodiment, each user system 12 and
all of its components are operator configurable using appli-
cations, such as a browser, including computer code run
using a central processing unit such as an Intel Pentium®
processor or the like. Similarly, system 16 (and additional

US 9,456,044 B2

9

instances of an MTS, where more than one is present) and
all of their components might be operator configurable using
application(s) including computer code to run using a central
processing unit such as processor system 17, which may
include an Intel Pentium® processor or the like, and/or
multiple processor units. A computer program product
embodiment includes a machine-readable storage medium
(media) having instructions stored thereon/in which can be
used to program a computer to perform any of the processes
of the embodiments described herein. Computer code for
operating and configuring system 16 to intercommunicate
and to process webpages, applications and other data and
media content as described herein are preferably down-
loaded and stored on a hard disk, but the entire program
code, or portions thereof, may also be stored in any other
volatile or non-volatile memory medium or device as is well
known, such as a ROM or RAM, or provided on any media
capable of storing program code, such as any type of rotating
media including floppy disks, optical discs, digital versatile
disk (DVD), compact disk (CD), microdrive, and magneto-
optical disks, and magnetic or optical cards, nanosystems
(including molecular memory ICs), or any type of media or
device suitable for storing instructions and/or data. Addi-
tionally, the entire program code, or portions thereof, may be
transmitted and downloaded from a software source over a
transmission medium, e.g., over the Internet, or from
another server, as is well known, or transmitted over any
other conventional network connection as is well known
(e.g., extranet, VPN, LAN; etc.) using any communication
medium and protocols (e.g., TCP/IP, HTTP, HTTPS, Ether-
net, etc.) as are well known. It will also be appreciated that
computer code for implementing embodiments of the pres-
ent invention can be implemented in any programming
language that can be executed on a client system and/or
server or server system such as, for example, C, C++,
HTML, any other markup language, Java™, JavaScript,
ActiveX, any other scripting language, such as VBScript,
and many other programming languages as are well known
may be used. (Java™ is a trademark of Sun Microsystems,
Inc.).

According to one embodiment, each system 16 is config-
ured to provide webpages, forms, applications, data and
media content to user (client) systems 12 to support the
access by user systems 12 as tenants of system 16. As such,
system 16 provides security mechanisms to keep each
tenant’s data separate unless the data is shared. If more than
one MTS is used, they may be located in close proximity to
one another (e.g., in a server farm located in a single
building or campus), or they may be distributed at locations
remote from one another (e.g., one or more servers located
in city A and one or more servers located in city B). As used
herein, each MTS could include one or more logically and/or
physically connected servers distributed locally or across
one or more geographic locations. Additionally, the term
“server” is meant to include a computer system, including
processing hardware and process space(s), and an associated
storage system and database application (e.g., OODBMS or
RDBMS) as is well known in the art. It should also be
understood that “server system” and “server” are often used
interchangeably herein. Similarly, the database object
described herein can be implemented as single databases, a
distributed database, a collection of distributed databases, a
database with redundant online or offline backups or other
redundancies, etc., and might include a distributed database
or storage network and associated processing intelligence.

FIG. 1B also illustrates environment 10. However, in FIG.
1B elements of system 16 and various interconnections in an

10

15

20

25

30

35

40

45

50

55

60

65

10

embodiment are further illustrated. FIG. 1B shows that user
system 12 may include processor system 12A, memory
system 12B, input system 12C, and output system 12D. FIG.
1B shows network 14 and system 16. FIG. 1B also shows
that system 16 may include tenant data storage 22, tenant
data 23, system data storage 24, system data 25, User
Interface (UI) 30, Application Program Interface (API) 32,
PL/SOQL 34, save routines 36, application setup mecha-
nism 38, applications servers 1001-100N, system process
space 102, tenant process spaces 104, tenant management
process space 110, tenant storage area 112, user storage 114,
and application metadata 116. In other embodiments, envi-
ronment 10 may not have the same elements as those listed
above and/or may have other elements instead of, or in
addition to, those listed above.

User system 12, network 14, system 16, tenant data
storage 22, and system data storage 24 were discussed above
in FIG. 1A. Regarding user system 12, processor system
12A may be any combination of one or more processors.
Memory system 12B may be any combination of one or
more memory devices, short term, and/or long term memory.
Input system 12C may be any combination of input devices,
such as one or more keyboards, mice, trackballs, scanners,
cameras, and/or interfaces to networks. Output system 12D
may be any combination of output devices, such as one or
more monitors, printers, and/or interfaces to networks. As
shown by FIG. 1B, system 16 may include a network
interface 20 (of FIG. 1A) implemented as a set of HTTP
application servers 100, an application platform 18, tenant
data storage 22, and system data storage 24. Also shown is
system process space 102, including individual tenant pro-
cess spaces 104 and a tenant management process space 110.
Each application server 100 may be configured to tenant
data storage 22 and the tenant data 23 therein, and system
data storage 24 and the system data 25 therein to serve
requests of user systems 12. The tenant data 23 might be
divided into individual tenant storage areas 112, which can
be either a physical arrangement and/or a logical arrange-
ment of data. Within each tenant storage area 112, user
storage 114 and application metadata 116 might be similarly
allocated for each user. For example, a copy of a user’s most
recently used (MRU) items might be stored to user storage
114. Similarly, a copy of MRU items for an entire organi-
zation that is a tenant might be stored to tenant storage area
112. A UI 30 provides a user interface and an API 32
provides an application programmer interface to system 16
resident processes to users and/or developers at user systems
12. The tenant data and the system data may be stored in
various databases, such as one or more Oracle| databases.

Application platform 18 includes an application setup
mechanism 38 that supports application developers’ creation
and management of applications, which may be saved as
metadata into tenant data storage 22 by save routines 36 for
execution by subscribers as one or more tenant process
spaces 104 managed by tenant management process 110 for
example. Invocations to such applications may be coded
using PL/SOQL 34 that provides a programming language
style interface extension to API 32. A detailed description of
some PL/SOQL language embodiments is discussed in com-
monly owned U.S. Provisional Patent Application 60/828,
192 entitled, PROGRAMMING LANGUAGE METHOD
AND SYSTEM FOR EXTENDING APIS TO EXECUTE
IN CONJUNCTION WITH DATABASE APIS, by Craig
Weissman, filed Oct. 4, 2006, which is incorporated in its
entirety herein for all purposes. Invocations to applications
may be detected by one or more system processes, which
manages retrieving application metadata 116 for the sub-

US 9,456,044 B2

11

scriber making the invocation and executing the metadata as
an application in a virtual machine.

Each application server 100 may be communicably
coupled to database systems, e.g., having access to system
data 25 and tenant data 23, via a different network connec-
tion. For example, one application server 1001 might be
coupled via the network 14 (e.g., the Internet), another
application server 100N-1 might be coupled via a direct
network link, and another application server 100N might be
coupled by yet a different network connection. Transfer
Control Protocol and Internet Protocol (TCP/IP) are typical
protocols for communicating between application servers
100 and the database system. However, it will be apparent to
one skilled in the art that other transport protocols may be
used to optimize the system depending on the network
interconnect used.

In certain embodiments, each application server 100 is
configured to handle requests for any user associated with
any organization that is a tenant. Because it is desirable to be
able to add and remove application servers from the server
pool at any time for any reason, there is preferably no server
affinity for a user and/or organization to a specific applica-
tion server 100. In one embodiment, therefore, an interface
system implementing a load balancing function (e.g., an F5
Big-IP load balancer) is communicably coupled between the
application servers 100 and the user systems 12 to distribute
requests to the application servers 100. In one embodiment,
the load balancer uses a least connections algorithm to route
user requests to the application servers 100. Other examples
of load balancing algorithms, such as round robin and
observed response time, also can be used. For example, in
certain embodiments, three consecutive requests from the
same user could hit three different application servers 100,
and three requests from different users could hit the same
application server 100. In this manner, system 16 is multi-
tenant, wherein system 16 handles storage of, and access to,
different objects, data and applications across disparate users
and organizations.

As an example of storage, one tenant might be a company
that employs a sales force where each salesperson uses
system 16 to manage their sales process. Thus, a user might
maintain contact data, leads data, customer follow-up data,
performance data, goals and progress data, etc., all appli-
cable to that user’s personal sales process (e.g., in tenant
data storage 22). In an example of a MTS arrangement, since
all of the data and the applications to access, view, modify,
report, transmit, calculate, etc., can be maintained and
accessed by a user system having nothing more than net-
work access, the user can manage his or her sales efforts and
cycles from any of many different user systems. For
example, if a salesperson is visiting a customer and the
customer has Internet access in their lobby, the salesperson
can obtain critical updates as to that customer while waiting
for the customer to arrive in the lobby.

While each user’s data might be separate from other
users’ data regardless of the employers of each user, some
data might be organization-wide data shared or accessible by
a plurality of users or all of the users for a given organization
that is a tenant. Thus, there might be some data structures
managed by system 16 that are allocated at the tenant level
while other data structures might be managed at the user
level. Because an MTS might support multiple tenants
including possible competitors, the M TS should have secu-
rity protocols that keep data, applications, and application
use separate. Also, because many tenants may opt for access
to an MTS rather than maintain their own system, redun-
dancy, up-time, and backup are additional functions that

10

15

20

25

30

35

40

45

50

55

60

65

12

may be implemented in the MTS. In addition to user-specific
data and tenant-specific data, system 16 might also maintain
system level data usable by multiple tenants or other data.
Such system level data might include industry reports, news,
postings, and the like that are sharable among tenants.

In certain embodiments, user systems 12 (which may be
client systems) communicate with application servers 100 to
request and update system-level and tenant-level data from
system 16 that may require sending one or more queries to
tenant data storage 22 and/or system data storage 24. System
16 (e.g., an application server 100 in system 16) automati-
cally generates one or more SQL statements (e.g., one or
more SQL queries) that are designed to access the desired
information. System data storage 24 may generate query
plans to access the requested data from the database.

Each database can generally be viewed as a collection of
objects, such as a set of logical tables, containing data fitted
into predefined categories. A “table” is one representation of
a data object, and may be used herein to simplify the
conceptual description of objects and custom objects accord-
ing to the present invention. It should be understood that
“table” and “object” may be used interchangeably herein.
Each table generally contains one or more data categories
logically arranged as columns or fields in a viewable
schema. Each row or record of a table contains an instance
of data for each category defined by the fields. For example,
a CRM database may include a table that describes a
customer with fields for basic contact information such as
name, address, phone number, fax number, etc. Another
table might describe a purchase order, including fields for
information such as customer, product, sale price, date, etc.
In some multi-tenant database systems, standard entity
tables might be provided for use by all tenants. For CRM
database applications, such standard entities might include
tables for Account, Contact, LLead, and Opportunity data,
each containing pre-defined fields. It should be understood
that the word “entity” may also be used interchangeably
herein with “object” and “table”.

In some multi-tenant database systems, tenants may be
allowed to create and store custom objects, or they may be
allowed to customize standard entities or objects, for
example by creating custom fields for standard objects,
including custom index fields. U.S. patent application Ser.
No. 10/817,161, filed Apr. 2, 2004, entitled “Custom Entities
and Fields in a Multi-Tenant Database System”, and which
is hereby incorporated herein by reference, teaches systems
and methods for creating custom objects as well as custom-
izing standard objects in a multi-tenant database system. In
certain embodiments, for example, all custom entity data
rows are stored in a single multi-tenant physical table, which
may contain multiple logical tables per organization. It is
transparent to customers that their multiple “tables” are in
fact stored in one large table or that their data may be stored
in the same table as the data of other customers.

FIG. 2A shows a system diagram 200 illustrating archi-
tectural components of an on-demand service environment,
in accordance with one embodiment.

A client machine located in the cloud 204 (or Internet)
may communicate with the on-demand service environment
via one or more edge routers 208 and 212. The edge routers
may communicate with one or more core switches 220 and
224 via firewall 216. The core switches may communicate
with a load balancer 228, which may distribute server load
over different pods, such as the pods 240 and 244. The pods
240 and 244, which may each include one or more servers
and/or other computing resources, may perform data pro-
cessing and other operations used to provide on-demand

US 9,456,044 B2

13

services. Communication with the pods may be conducted
via pod switches 232 and 236. Components of the on-
demand service environment may communicate with a data-
base storage system 256 via a database firewall 248 and a
database switch 252.

As shown in FIGS. 2A and 2B, accessing an on-demand
service environment may involve communications transmit-
ted among a variety of different hardware and/or software
components. Further, the on-demand service environment
200 is a simplified representation of an actual on-demand
service environment. For example, while only one or two
devices of each type are shown in FIGS. 2A and 2B, some
embodiments of an on-demand service environment may
include anywhere from one to many devices of each type.
Also, the on-demand service environment need not include
each device shown in FIGS. 2A and 2B, or may include
additional devices not shown in FIGS. 2A and 2B.

Moreover, one or more of the devices in the on-demand
service environment 200 may be implemented on the same
physical device or on different hardware. Some devices may
be implemented using hardware or a combination of hard-
ware and software. Thus, terms such as “data processing
apparatus,” “machine,” “server” and “device” as used herein
are not limited to a single hardware device, but rather
include any hardware and software configured to provide the
described functionality.

The cloud 204 is intended to refer to a data network or
plurality of data networks, often including the Internet.
Client machines located in the cloud 204 may communicate
with the on-demand service environment to access services
provided by the on-demand service environment. For
example, client machines may access the on-demand service
environment to retrieve, store, edit, and/or process informa-
tion.

In some embodiments, the edge routers 208 and 212 route
packets between the cloud 204 and other components of the
on-demand service environment 200. The edge routers 208
and 212 may employ the Border Gateway Protocol (BGP).
The BGP is the core routing protocol of the Internet. The
edge routers 208 and 212 may maintain a table of IP
networks or ‘prefixes’ which designate network reachability
among autonomous systems on the Internet.

In one or more embodiments, the firewall 216 may protect
the inner components of the on-demand service environment
200 from Internet traffic. The firewall 216 may block,
permit, or deny access to the inner components of the
on-demand service environment 200 based upon a set of
rules and other criteria. The firewall 216 may act as one or
more of a packet filter, an application gateway, a stateful
filter, a proxy server, or any other type of firewall.

In some embodiments, the core switches 220 and 224 are
high-capacity switches that transfer packets within the on-
demand service environment 200. The core switches 220
and 224 may be configured as network bridges that quickly
route data between different components within the on-
demand service environment. In some embodiments, the use
of two or more core switches 220 and 224 may provide
redundancy and/or reduced latency.

In some embodiments, the pods 240 and 244 may perform
the core data processing and service functions provided by
the on-demand service environment. Each pod may include
various types of hardware and/or software computing
resources. An example of the pod architecture is discussed
in greater detail with reference to FIG. 2B.

In some embodiments, communication between the pods
240 and 244 may be conducted via the pod switches 232 and
236. The pod switches 232 and 236 may facilitate commu-

10

15

20

25

30

35

40

45

50

55

60

65

14

nication between the pods 240 and 244 and client machines
located in the cloud 204, for example via core switches 220
and 224. Also, the pod switches 232 and 236 may facilitate
communication between the pods 240 and 244 and the
database storage 256.

In some embodiments, the load balancer 228 may distrib-
ute workload between the pods 240 and 244. Balancing the
on-demand service requests between the pods may assist in
improving the use of resources, increasing throughput,
reducing response times, and/or reducing overhead. The
load balancer 228 may include multilayer switches to ana-
lyze and forward traffic.

In some embodiments, access to the database storage 256
may be guarded by a database firewall 248. The database
firewall 248 may act as a computer application firewall
operating at the database application layer of a protocol
stack. The database firewall 248 may protect the database
storage 256 from application attacks such as structure query
language (SQL) injection, database rootkits, and unauthor-
ized information disclosure.

In some embodiments, the database firewall 248 may
include a host using one or more forms of reverse proxy
services to proxy traffic before passing it to a gateway router.
The database firewall 248 may inspect the contents of
database traffic and block certain content or database
requests. The database firewall 248 may work on the SQL
application level atop the TCP/IP stack, managing applica-
tions’ connection to the database or SQL management
interfaces as well as intercepting and enforcing packets
traveling to or from a database network or application
interface.

In some embodiments, communication with the database
storage system 256 may be conducted via the database
switch 252. The multi-tenant database system 256 may
include more than one hardware and/or software compo-
nents for handling database queries. Accordingly, the data-
base switch 252 may direct database queries transmitted by
other components of the on-demand service environment
(e.g., the pods 240 and 244) to the correct components
within the database storage system 256.

In some embodiments, the database storage system 256 is
an on-demand database system shared by many different
organizations. The on-demand database system may employ
a multi-tenant approach, a virtualized approach, or any other
type of database approach. An on-demand database system
is discussed in greater detail with reference to Figures # and

FIG. 2B shows a system diagram illustrating the archi-
tecture of the pod 244, in accordance with one embodiment.
The pod 244 may be used to render services to a user of the
on-demand service environment 200.

In some embodiments, each pod may include a variety of
servers and/or other systems. The pod 244 includes one or
more content batch servers 264, content search servers 268,
query servers 272, file force servers 276, access control
system (ACS) servers 280, batch servers 284, and app
servers 288. Also, the pod 244 includes database instances
290, quick file systems (QFS) 292, and indexers 294. In one
or more embodiments, some or all communication between
the servers in the pod 244 may be transmitted via the switch
236.

In some embodiments, the application servers 288 may
include a hardware and/or software framework dedicated to
the execution of procedures (e.g., programs, routines,
scripts) for supporting the construction of applications pro-
vided by the on-demand service environment 200 via the
pod 244. Some such procedures may include operations for

US 9,456,044 B2

15

providing the services described herein, such as performing
the methods/processes described below with reference to
FIGS. 10-28. In alternative embodiments, two or more app
servers 288 may be included and cooperate to perform such
methods, or one or more other servers in FIG. 2B can be
configured to perform the disclosed methods described
below.

The content batch servers 264 may requests internal to the
pod. These requests may be long-running and/or not tied to
a particular customer. For example, the content batch servers
264 may handle requests related to log mining, cleanup
work, and maintenance tasks.

The content search servers 268 may provide query and
indexer functions. For example, the functions provided by
the content search servers 268 may allow users to search
through content stored in the on-demand service environ-
ment.

The Fileforce servers 276 may manage requests informa-
tion stored in the Fileforce storage 278. The Fileforce
storage 278 may store information such as documents,
images, and basic large objects (BLOBs). By managing
requests for information using the Fileforce servers 276, the
image footprint on the database may be reduced.

The query servers 272 may be used to retrieve informa-
tion from one or more file systems. For example, the query
system 272 may receive requests for information from the
app servers 288 and then transmit information queries to the
NFS 296 located outside the pod.

The pod 244 may share a database instance 290 config-
ured as a multi-tenant environment in which different orga-
nizations share access to the same database. Additionally,
services rendered by the pod 244 may require various
hardware and/or software resources. In some embodiments,
the ACS servers 280 may control access to data, hardware
resources, or software resources.

In some embodiments, the batch servers 284 may process
batch jobs, which are used to run tasks at specified times.
Thus, the batch servers 284 may transmit instructions to
other servers, such as the app servers 288, to trigger the
batch jobs.

In some embodiments, the QFS 292 may be an open
source file system available from Sun Microsystems® of
Santa Clara, Calif. The QFS may serve as a rapid-access file
system for storing and accessing information available
within the pod 244. The QFS 292 may support some volume
management capabilities, allowing many disks to be
grouped together into a file system. File system metadata can
be kept on a separate set of disks, which may be useful for
streaming applications where long disk seeks cannot be
tolerated. Thus, the QFS system may communicate with one
or more content search servers 268 and/or indexers 294 to
identify, retrieve, move, and/or update data stored in the
network file systems 296 and/or other storage systems.

In some embodiments, one or more query servers 272
may communicate with the NFS 296 to retrieve and/or
update information stored outside of the pod 244. The NFS
296 may allow servers located in the pod 244 to access
information to access files over a network in a manner
similar to how local storage is accessed.

In some embodiments, queries from the query servers 222
may be transmitted to the NFS 296 via the load balancer 220,
which may distribute resource requests over various
resources available in the on-demand service environment.
The NFS 296 may also communicate with the QFS 292 to
update the information stored on the NFS 296 and/or to
provide information to the QFS 292 for use by servers
located within the pod 244.

10

15

20

25

30

35

40

45

50

55

60

65

16

In some embodiments, the pod may include one or more
database instances 290. The database instance 290 may
transmit information to the QFS 292. When information is
transmitted to the QFS, it may be available for use by servers
within the pod 244 without requiring an additional database
call.

In some embodiments, database information may be
transmitted to the indexer 294. Indexer 294 may provide an
index of information available in the database 290 and/or
QFS 292. The index information may be provided to file
force servers 276 and/or the QFS 292.

III. Tracking Updates to a Record Stored in a Database

As multiple users might be able to change the data of a
record, it can be useful for certain users to be notified when
a record is updated. Also, even if a user does not have
authority to change a record, the user still might want to
know when there is an update. For example, a vendor may
negotiate a new price with a salesperson of company X,
where the salesperson is a user associated with tenant X. As
part of creating a new invoice or for accounting purposes,
the salesperson can change the price saved in the database.
It may be important for co-workers to know that the price
has changed. The salesperson could send an e-mail to certain
people, but this is onerous and the salesperson might not
e-mail all of the people who need to know or want to know.
Accordingly, embodiments can inform others (e.g. co-work-
ers) who want to know about an update to a record auto-
matically.

FIG. 3 is a flowchart of a method 300 for tracking updates
to a record stored in a database system according to embodi-
ments. In some embodiments, method 300 (and other meth-
ods described herein) may be implemented at least partially
with multi-tenant database system 16, e.g., by one or more
processors configured to receive or retrieve information,
process the information, store results, and the transmit the
results. In other embodiments, method 300 may be imple-
mented at least partially with a single tenant database
system. In various embodiments, steps may be omitted,
combined, or split into additional steps for method 300, as
well as for other methods described herein.

In step 310, the database system receives a request to
update a first record. In one embodiment, the request is
received from a first user. For example, a user may be
accessing a page associated with the first record, and may
change a displayed field and hit save. In another embodi-
ment, the database system can automatically create the
request. For instance, the database system can create the
request in response to another event, e.g., a request to change
a field could be sent periodically at a particular date and/or
time of day, or a change to another field or object. The
database system can obtain a new value based on other fields
of a record and/or based on parameters in the system.

The request for the update of a field of a record is an
example of an event associated with the first record for
which a feed tracked update may be created. In other
embodiments, the database system can identify other events
besides updates to fields of a record. For example, an event
can be a submission of approval to change a field. Such an
event can also have an associated field (e.g., a field showing
a status of whether a change has been submitted). Other
examples of events can include creation of a record, deletion
of a record, converting a record from one type to another
(e.g. converting a lead to an opportunity), closing a record
(e.g. a case type record), and potentially any state change of
a record—any of which could include a field change asso-
ciated with the state change. Any of these events update the
record whether by changing a field of the record, a state of

US 9,456,044 B2

17

the record, or some other characteristic or property of the
record. In one embodiment, a list of supported events for
creating a feed tracked update can be maintained within the
database system, e.g., at a server or in a database.

In step 320, the database system writes new data to the
first record. In one embodiment, the new data may include
a new value that replaces old data. For example, a field is
updated with a new value. In another embodiment, the new
data can be a value for a field that did not contain data
before. In yet another embodiment, the new data could be a
flag, e.g., for a status of the record, which can be stored as
a field of the record.

In some embodiments, a “field” can also include records
that are child objects of the first record. A child object itself
can include further fields. Thus, if a field of a child object is
updated with a new value, the parent record also can be
considered to have a field changed. In one example, a field
could be a list of related child objects, also called a related
list.

In step 330, a feed tracked update is generated about the
update to the record. In one embodiment, the feed tracked
update is created in parts for assembling later into a display
version. For example, event entries can be created and
tracked in one table, and changed field entries can be tracked
in another table that is cross-referenced with the first table.
More specifics of such embodiments are provided later, e.g.,
with respect to FIG. 9A. In another embodiment, the feed
tracked update is automatically generated by the database
system. The feed tracked update can convey in words that
the first record has been updated and provide details about
what was updated in the record and who performed the
update. In some embodiments, a feed tracked update is
generated for only certain types of event and/or updates
associated with the first record.

In one embodiment, a tenant (e.g. through an administra-
tor) can configure the database system to create (enable)
feed tracked updates only for certain types of records. For
example, an administrator can specify that records of type
Account and Opportunity are enabled. When an update (or
other event) is received for the enabled record type, then a
feed tracked update would be generated. In another embodi-
ment, a tenant can also specify the fields of a record whose
changes are to be tracked, and for which feed tracked
updates are created. In one aspect, a maximum number of
fields can be specified for tracking, and may include custom
fields. In one implementation, the type of change can also be
specified, for example, that the value change of a field is
required to be larger than a threshold (e.g. an absolute
amount or a percentage change). In yet another embodiment,
a tenant can specify which events are to cause a generation
of a feed tracked update. Also, in one implementation,
individual users can specify configurations specific to them,
which can create custom feeds as described in more detail
below.

In one embodiment, changes to fields of a child object are
not tracked to create feed tracked updates for the parent
record. In another embodiment, the changes to fields of a
child object can be tracked to create feed tracked updates for
the parent record. For example, a child object of the parent
type can be specified for tracking, and certain fields of the
child object can be specified for tracking. As another
example, if the child object is of a type specified for
tracking, then a tracked change for the child object is
propagated to parent records of the child object.

In step 340, the feed tracked update is added to a feed for
the first record. In one embodiment, adding the feed tracked
update to a feed can include adding events to a table (which

40

45

18

may be specific to a record or be for all or a group of
objects), where a display version of a feed tracked update
can be performed dynamically when a user requests a feed
for the first record. In another embodiment, a display version
of a feed tracked update can be added when a record feed is
stored and maintained for a record. As mentioned above, a
feed may be maintained for only certain records. In one
implementation, the feed of a record can be stored in the
database associated with the feed. For example, the feed can
be stored as a field (e.g. as a child object) of the record. Such
a field can store a pointer to the text to be displayed for the
feed tracked update.

In some embodiments, only the current feed tracked
update (or other current feed item) may be kept or tempo-
rarily stored, e.g., in some temporary memory structure. For
example, a feed tracked update for only a most recent
change to any particular field is kept. In other embodiments,
many previous feed tracked updates may be kept in the feed.
A time and/or date for each feed tracked update can be
tracked. Herein, a feed of a record is also referred to as an
entity feed, as a record is an instance of a particular entity
object of the database.

In step 350, followers of the first record can be identified.
A follower is a user following (subscribing to a feed) of the
first record. In one embodiment, when a user requests a feed
of a particular record such an identification need not be
done. In another embodiment where a record feed is pushed
to a user (e.g. as part of a news feed), then the user can be
identified as a follower of the first record. Accordingly, this
step can be the identification of records and other objects
being followed by a particular user.

In one embodiment, the database system can store a list of
the followers for a particular record. In various implemen-
tations, the list can be stored with the first record or
associated with the record using an identifier (e.g. a pointer)
to retrieve the list. For example, the list can be stored in a
field of the first record. In another embodiment, a list of the
records that a user is following is used. In one implemen-
tation, the database system can have a routine that runs for
each user, where the routine polls the records in the list to
determine if a new feed tracked update has been added to a
feed of the record. In another implementation, the routine for
the user can be running at least partially on a user device,
which contacts the database to perform the polling.

In step 360, the feed tracked update is added to a feed of
each follower. In one embodiment, the feed tracked update
is pushed to the feed of a user, e.g., by a routine that
determines the followers for the record from a list associated
with the record. In another embodiment, the feed tracked
update is pulled to a feed, e.g., by a user device. This pulling
may occur when a user requests the feed, as occurs in step
370. Thus, these actions may occur in a different order. The
creation of the feed for a pull may be a dynamic creation that
identifies records being followed by the requesting user,
generates the display version of relevant feed tracked
updates from stored information (e.g. event and field
change), and adds the feed tracked updates into the feed. A
feed of feed tracked updates of records and other objects that
a user is following is also called a news feed.

In yet another embodiment, the feed tracked update could
be sent as an e-mail to the follower, instead of in a feed. In
one implementation, e-mail alerts for events can enable
people to be e-mailed when certain events occur. In another
implementation, e-mails can be sent when there are posts on
a user profile and posts on entities to which the user
subscribes. In one implementation, a user can turn on/off
email alerts for all or some events. In an embodiment, a user

US 9,456,044 B2

19

can specify what kind of feed tracked updates to receive
about a record that the user is following. For example, a user
can choose to only receive feed tracked updates about
certain fields of a record that the user is following, and
potentially about what kind of update was performed (e.g. a
new value input into a specified field, or the creation of a
new field).

In step 370, a follower can access his/her news feed to see
the feed tracked update. In one embodiment, the user has just
one news feed for all of the records that the user is following.
In one aspect, a user can access his/her own feed by selecting
a particular tab or other object on a page of an interface to
the database system. Once selected the feed can be provided
as a list, e.g., with an identifier (e.g. a time) or including
some or all of the text of the feed tracked update. In another
embodiment, the user can specify how the feed tracked
updates are to be displayed and/or sent to the user. For
example, a user can specify a font for the text, a location of
where the feed can be selected and displayed, amount of text
to be displayed, and other text or symbols to be displayed
(e.g. importance flags).

FIG. 4 is a block diagram 400 of components of a
database system performing a method for tracking an update
to a record according to embodiments. Block diagram 400
can perform embodiments of method 300, as well as
embodiments of other method described herein.

A first user 405 sends a request 1 to update record 425 in
database system 416. Although an update request is
described, other events that are being tracked are equally
applicable. In various embodiments, the request 1 can be
sent via a user interface (e.g. 30 of FIG. 1B) or an applica-
tion program interface (e.g. API 32). An I/O port 420 can
accommodate the signals of request 1 via any input inter-
face, and send the signals to one or more processors 417. The
processor 417 can analyze the request and determine actions
to be performed. Herein, any reference to a processor 417
can refer to a specific processor or any set of processors in
database system 416, which can be collectively referred to
as processor 417.

Processor 417 can determine an identifier for record 425,
and send commands 2 with the new data to record database
412 to update record 425. In one embodiment, record
database 412 is where tenant data 112 is stored. The request
1 and new data commands 2 can be encapsulated in a single
write transaction sent to record database 412. In one embodi-
ment, multiple changes to records in the database can be
made in a single write transaction.

Processor 417 can also analyze request 1 to determine
whether a feed tracked update is to be created, which at this
point may include determining whether the event (e.g. a
change to a particular field) is to be tracked. This determi-
nation can be based on an interaction (i.e. an exchange of
data) with record database 412 and/or other databases, or
based on information stored locally (e.g. in cache or RAM)
at processor 417. In one embodiment, a list of record types
that are being tracked can be stored. The list may be different
for each tenant, e.g. as each tenant may configure the
database system to their own specifications. Thus, if the
record 425 is of a type not being tracked, then the determi-
nation of whether to create a feed tracked update can stop
there.

The same list or a second list (which can be stored in a
same location or a different location) can also include the
fields and/or events that are tracked for the record types in
the first list. This list can be searched to determine if the
event is being tracked. A list may also contain information
having the granularity of listing specific records that are to

25

30

40

45

50

55

20

be tracked (e.g. if a tenant can specify the particular records
to be tracked, as opposed to just type).

As an example, processor 417 may obtain an identifier
associated with record 425 (e.g. obtained from request 1 or
database 412), potentially along with a tenant identifier, and
cross-reference the identifier with a list of records for which
feed tracked updates are to be created. Specifically, the
record identifier can be used to determine the record type
and a list of tracked types can be searched for a match. The
specific record may also be checked if such individual
record tracking was enabled. The name of the field to be
changed can also be used to search a list of tracking-enabled
fields. Other criteria besides field and events can be used to
determine whether a feed tracked update is created, e.g.,
type of change in the field. If a feed tracked update is to be
generated, processor 417 can then generate the feed tracked
update.

In some embodiments, a feed tracked update is created
dynamically when a feed (e.g. the entity feed of record 425)
is requested. Thus, in one implementation, a feed tracked
update can be created when a user requests the entity feed
for record 425. In this embodiment, the feed tracked update
may be created (e.g. assembled), including re-created, each
time the entity feed is to be displayed to any user. In one
implementation, one or more hifeed tracked update tables
can keep track of previous events so that the feed tracked
update can be re-created.

In another embodiment, a feed tracked update can be
created at the time the event occurs, and the feed tracked
update can be added to a list of feed items. The list of feed
items may be specific to record 425, or may be an aggregate
of feed items including feed items for many records. Such an
aggregate list can include a record identifier so that the feed
items for the entity feed of record 425 can be easily
retrieved. For example, after the feed tracked update has
been generated, processor 417 can add the new feed tracked
update 3 to a feed of record 425. As mentioned above, in one
embodiment, the feed can be stored in a field (e.g. as a child
object) of record 425. In another embodiment, the feed can
be stored in another location or in another database, but with
a link (e.g. a connecting identifier) to record 425. The feed
can be organized in various ways, e.g., as a linked list, an
array, or other data structure.

A second user 430 can access the new feed tracked update
3 in various ways. In one embodiment, second user 430 can
send a request 4 for the record feed. For example, second
user 430 can access a home page (detail page) of the record
425 (e.g. with a query or by browsing), and the feed can be
obtained through a tab, button, or other activation object on
the page. The feed can be displayed on the screen or
downloaded.

In another embodiment, processor 417 can add the new
feed tracked update in a step 5 to a feed (e.g. a news feed)
of a user that is following record 425. In one implementa-
tion, processor 417 can determine each of the followers of
record 425 by accessing a list of the users that have been
registered as followers. This determination can be done for
each new event (e.g. update 1). In another implementation,
processor 417 can poll (e.g. with a query) the records that
second user 430 is following to determine when new feed
tracked updates (or other feed items) are available. Processor
417 can use a follower profile 435 of second user 430, which
can contain a list of the records that the second user 430 is
following. Such a list can be contained in other parts of the
database as well. Second user 430 can then send a request 6
to his/her profile 435 to obtain a feed, which contains the

US 9,456,044 B2

21

new feed tracked update. The user’s profile 435 can be
stored in a profile database 414, which can be the same or
different than database 412.

In some embodiments, a user can define a news feed to
include new feed tracked updates from various records,
which may be limited to a maximum number. In one
embodiment, each user has one news feed. In another
embodiment, the follower profile 435 can include the speci-
fications of each of the records to be followed (with the
criteria for what feed tracked updates are to be provided and
how they are displayed), as well as the feed.

Some embodiments can provide various types of record
(entity) feeds. Entity Feeds can exist for records like
Account, Opportunity, Case, and Contact. An entity feed can
tell a user about the actions that people have taken on that
particular record or on one its related records. The entity
feed can include who made the action, which field was
changed, and the old and new values. In one embodiment,
entity feeds can exist on all supported records as a list that
is linked to the specific record. For example, a feed could be
stored in a field that allows lists (e.g. linked lists) or as a
child object.

IV. Tracking Actions of a User

In addition to knowing about events associated with a
particular record, it can be helpful for a user to know what
a particular user is doing. In particular, it might be nice to
know what the user is doing without the user having to
generate the feed tracked update (e.g. a user submitting a
synopsis of what the user has done). Accordingly, embodi-
ments can automatically track actions of a user that trigger
events, and feed tracked updates can be generated for certain
events.

FIG. 5 is a flowchart of a method 500 for tracking actions
of a user of a database system according to embodiments.
Method 500 may be performed in addition to method 300.
The methods of implementing method 300, including order
of steps, can also be applied to method 500 and other
methods described herein. Thus, a feed can be composed of
changes to a record and actions of users.

In step 510, a database system (e.g. 16) identifies an
action of a first user. In one embodiment, the action triggers
an event, and the event is identified. For example, the action
of a user requesting an update to a record can be identified,
where the event is receiving a request or is the resulting
update of a record. The action may thus be defined by the
resulting event. In another embodiment, only certain types
of actions (events) are identified. Which actions are identi-
fied can be set as a default or can be configurable by a tenant,
or even configurable at a user level. In this way, processing
effort can be reduced since only some actions are identified.

In step 520, it is determined whether the event qualifies
for a feed tracked update. In one embodiment, a predefined
list of events (e.g. as mentioned herein) can be created so
that only certain actions are identified. In one embodiment,
an administrator (or other user) of a tenant can specify the
type of actions (events) for which a feed tracked update is to
be generated. This step may also be performed for method
300.

In step 530, a feed tracked update is generated about the
action. In an example where the action is an update of a
record, the feed tracked update can be similar or the same as
the feed tracked update created for the record. The descrip-
tion can be altered though to focus on the user as opposed
to the record. For example, “John D. has closed a new
opportunity for account XYZ” as opposed to “an opportu-
nity has been closed for account XYZ.”

25

35

40

45

50

55

60

65

22

In step 540, the feed tracked update is added to a profile
feed of the first user. In one embodiment, a feed for a
particular user can be accessed on a page of the user’s
profile, in a similar manner as a record feed can be accessed
on a detail page of the record. In another embodiment, the
first user may not have a profile feed and the feed tracked
update may just be stored temporarily before proceeding. A
profile feed of a user can be stored associated with the user’s
profile. This profile feed can be added to a news feed of
another user.

In step 550, followers of the first user are identified. In one
embodiment, a user can specify which type of actions other
users can follow. Similarly, in one implementation, a fol-
lower can select what actions by a user the follower wants
to follow. In an embodiment where different followers
follow different types of actions, which users are followers
of that user and the particular action can be identified, e.g.,
using various lists that track what actions and criteria are
being followed by a particular user. In various embodiments,
the followers of the first user can be identified in a similar
manner as followers of a record, as described above for step
350.

In step 560, the feed tracked update is added to a news
feed of each follower of the first user. The feed tracked
update can be added in a similar manner as the feed items for
a record feed. The news feed can contain feed tracked
updates both about users and records. In another embodi-
ment, a user can specify what kind of feed tracked updates
to receive about a user that the user is following. For
example, a user could specify feed tracked updates with
particular keywords, of certain types of records, of records
owned or created by certain users, particular fields, and other
criteria as mentioned herein.

In step 570, a follower accesses the news feed and sees the
feed tracked update. In one embodiment, the user has just
one news feed for all of the records that the user is following.
In another embodiment, a user can access his/her own feed
(i.e. feed about his/her own actions) by selecting a particular
tab or other object on a page of an interface to the database
system. Thus, a feed can include feed tracked updates about
what other users are doing in the database system. When a
user becomes aware of a relevant action of another user, the
user can contact the co-worker, thereby fostering teamwork.

V. Generation of a Feed Tracked Update

As described above, some embodiments can generate text
describing events (e.g. updates) that have occurred for a
record and actions by a user that trigger an event. A database
system can be configured to generate the feed tracked
updates for various events in various ways.

A. Which Events to Generate a Feed Tracked Update

In a database system, there are various events that can be
detected. However, the operator of the database system
and/or a tenant may not want to detect every possible event
as this could be costly with regards to performance. Accord-
ingly, the operator and/or the tenant can configure the
database system to only detect certain events. For example,
an update of a record may be an event that is to be detected.

Out of the events that are detected, a tenant (including a
specific user of the tenant) may not want a feed tracked
update about each detected event. For example, all updates
to a record may be identified at a first level. Then, based on
specifications of an administrator and/or a specific user of a
tenant, another level of inquiry can be made as to whether
a feed tracked update is to be generated about the detected
event. For example, the events that qualify for a feed tracked
update can be restricted to changes for only certain fields of
the record, which can differ depending on which user is

US 9,456,044 B2

23

receiving the feed. In one embodiment, a database system
can track whether an event qualifies for a feed tracked
update for any user, and once the feed tracked update is
generated, it can be determined who is to receive the feed
tracked update.

Supported events (events for which a feed tracked update
is generated) can include actions for standard fields, custom
fields, and standard related lists. Regarding standard fields,
for the entity feed and the profile feed, a standard field
update can trigger a feed tracked update to be published to
that feed. In one embodiment, which standard field can
create a feed tracked update can be set by an administrator
to be the same for every user. In another embodiment, a user
can set which standard fields create a feed tracked update for
that user’s news feed. Custom fields can be treated the same
or differently than standard fields.

The generation of a feed item can also depend on a
relationship of an object to other objects (e.g. parent-child
relationships). For example, if a child object is updated, a
feed tracked update may be written to a feed of a parent of
the child object. The level of relationship can be configured,
e.g., only 1 level of separation (i.e. no grandparent-grand-
child relationship). Also, in one embodiment, a feed tracked
update is generated only for objects above the objects being
updated, i.e., a feed tracked update is not written for a child
when the parent is updated.

In some embodiments, for related lists of a record, a feed
tracked update is written to its parent record (1 level only)
when the related list item is added, and not when the list item
is changed or deleted. For example: user A added a new
opportunity XYZ for account ABC. In this manner, entity
feeds can be controlled so as not to be cluttered with feed
tracked updates about changes to their related items. Any
changes to the related list item can be tracked on their own
entity feed, if that related list item has a feed on it. In this
embodiment, if a user wants to see a feed of the related list
item then the user can subscribe to it. Such a subscription
might be when a user cares about a specific opportunity
related to a specific account. A user can also browse to that
object’s entity feed. Other embodiments can create a feed
tracked update when a related entity is changed or deleted.

In one embodiment, an administrator (of the system or of
a specific tenant) can define which events of which related
objects are to have feed tracked updates written about them
in a parent record. In another embodiment, a user can define
which related object events to show. In one implementation,
there are two types of related lists of related objects: first
class lookup and second class lookup. Each of the records in
the related lists can have a different rule for whether a feed
tracked update is generated for a parent record. Each of these
related lists can be composed as custom related lists. In
various embodiments, a custom related list can be composed
of custom objects, the lists can contain a variety of records
or items (e.g. not restricted to a particular type of record or
item), and can be displayed in a customized manner.

In one embodiment, a first class lookup contains records
of a child record that can exist by itself. For example, the
contacts on an account exist as a separate record and also as
a child record of the account. In another embodiment, a
record in a first class lookup can have its own feed, which
can be displayed on its detail page.

In one embodiment, a second class lookup can have line
items existing only in the context of their parent record (e.g.
activities on an opportunity, contact roles on opportunity/
contact). In one implementation, the line items are not
objects themselves, and thus there is no detail page, and no

20

40

45

24

place to put a feed. In another implementation, a change in
a second class lookup can be reported on the feed of the
parent.

Some embodiments can also create feed tracked updates
for dependent field changes. A dependent field change is a
field that changes value when another field changes, and thus
the field has a value that is dependent on the value of the
other field. For example, a dependent field might be a sum
(or other formula) that totals values in other fields, and thus
the dependent field would change when one of the fields
being summed changes. Accordingly, in one embodiment, a
change in one field could create feed tracked updates for
multiple fields. In other embodiments, feed tracked updates
are not created for dependent fields.

B. How the Feed Tracked Update is Generated

After it is determined that a feed tracked update is going
to be generated, some embodiments can also determine how
the feed tracked update is generated. In one embodiment,
different methods can be used for different events, e.g., in a
similar fashion as for the configurability of which events
feed tracked updates are generated. A feed tracked update
can also include a description of multiple events (e.g. john
changed the account status and amount).

In one embodiment, the feed tracked update is a gram-
matical sentence, thereby being easily understandable by a
person. In another embodiment, the feed tracked update
provides detailed information about the update. In various
examples, an old value and new value for a field may be
included in the feed tracked update, an action for the update
may be provided (e.g. submitted for approval), and the
names of particular users that are responsible for replying or
acting on the feed tracked update may be also provided. The
feed tracked update can also have a level of importance
based on settings chosen by the administrator, a particular
user requesting an update, or by a following user who is to
receive the feed tracked update, which fields is updated, a
percentage of the change in a field, the type of event, or any
combination of these factors.

The system may have a set of heuristics for creating a feed
tracked update from the event (e.g. a request to update). For
example, the subject may be the user, the record, or a field
being added or changed. The verb can be based on the action
requested by the user, which can be selected from a list of
verbs (which may be provided as defaults or input by an
administrator of a tenant). In one embodiment, feed tracked
updates can be generic containers with formatting restric-
tions,

As an example of a creation of a New record” “Mark
Abramowitz created a new Opportunity IBM-20,000 laptops
with Amount as $3.5M and Sam Palmisano as Decision
Maker.” This event can be posted to the profile feed for Mark
Abramowitz and the entity feed for record of Opportunity
for IBM-20,000 laptops. The pattern can be given by
(AgentFullName) created a new (ObjectName)(Record-
Name) with [(FieldName) as (FieldValue) [,/and]]* [[added/
changed/removed] (RelatedListRecordName) [as/to/as]
(RelatedListRecordValue) [,/and]]*. Similar patterns can be
formed for a changed field (standard or custom) and an
added child record to a related list.

V1. Tracking Commentary from or about a User

Some embodiments can also have a user submit text,
instead of the database system generating a feed tracked
update. As the text is submitted by users, the text (also
referred generally as messages) can be about any topic.
Thus, more information than just actions of a user and events
of a record can be conveyed. In one embodiment, the

US 9,456,044 B2

25

messages can be used to ask a question about a particular
record, and users following the record can provide responses
(comments).

FIG. 6 is a flowchart of a method 600 for creating a news
feed that includes messages associated with a first user
according to embodiments. In one embodiment, method 600
can be combined with methods 300 and 500. In one aspect,
a message can be associated with the first user when the first
user creates the message (e.g. a post or comment about a
record or another user). In another aspect, a message can be
associated with the first user when the message is about the
first user (e.g. posted by another user on the first user’s
profile feed).

In step 610, database system receives a message (e.g. a
post or status) associated with a first user. The message (e.g.
apost or status update) can contain text submitted by another
user or by the first user. In one embodiment, a post is for a
section of the first user’s profile where any user can add a
post, and where multiple posts can exist. Thus, a post can
appear on the first user’s profile and can be viewed when the
first user’s profile is visited. For a message about a record,
the post can appear on a detail page of a record. Note the
message can appear in other feeds as well. In another
embodiment, a status update about the first user can only be
added by the first user. In one implementation, a user can
only have one status message.

In step 620, the message is added to a profile of the first
user. In one implementation, the message can be added to a
profile feed of the first user, which is associated (e.g. as a
related list) with the first user’s profile. In one embodiment,
the posts are listed indefinitely. In another embodiment, only
the most recent posts (e.g. last 50) are kept in the profile
feed. Such embodiments can also be employed with feed
tracked updates. In yet another embodiment, the message
can be added to a profile of the user adding the message.

In step 630, database system identifies followers of the
first user. In one embodiment, the database system can
identify the followers as described above for method 500. In
various embodiments, a follower can select to follow a feed
about the actions of the first user, messages about the first
user, or both (potentially in a same feed).

In step 640, the message is added to a news feed of each
follower. In one embodiment, the message is only added to
a news feed of a particular follower if the message matches
some criteria, e.g., the message includes a particular key-
word or other criteria. In another embodiment, a message
can be deleted by the user who created the message. In one
implementation, once deleted by the author, the message is
deleted from all feeds to which the message had been added.

In step 650, the follower accesses a news feed and sees the
message. For example, the follower can access a news feed
on the user’s own profile page. As another example, the
follower can have a news feed sent to his/her own desktop
without having to first go to a home page.

In step 660, database system receives a comment about
the message. The database system can add the comment to
a feed of the same first user, much as the original message
was added. In one embodiment, the comment can also be
added to a feed of the user adding the comment. In one
implementation, users can also reply to the comment. In
another embodiment, users can add comments to a feed
tracked update, and further comments can be associated with
the feed tracked update. In yet another embodiment, making
a comment or message is not an action to which a feed
tracked update is created. Thus, the message may be the only
feed item created from such an action.

10

15

20

25

30

35

40

45

50

55

60

65

26

In one implementation, if a feed tracked update (or post)
is deleted, its corresponding comments are deleted as well.
In another embodiment, new comments on a feed tracked
update (or post) do not update the feed tracked update
timestamp. Also, the feed tracked update or post can con-
tinue to be shown in a feed (profile feed, record feed, or news
feed) if it has had a comment within a specified timeframe
(e.g. within the last week). Otherwise, the feed tracked
update (post) can be removed in an embodiment.

In some embodiments, all or most feed tracked updates
can be commented on. In other embodiments, feed tracked
updates for certain records (e.g. cases or ideas) are not
commentable. In various embodiments, comments can be
made for any one or more records of opportunities, accounts,
contacts, leads, and custom objects.

In step 670, the comment is added to a news feed of each
follower. In one embodiment, a user can make the comment
within the user’s news feed. Such a comment can propagate
to the appropriate profile feed or record feed, and then to the
news feeds of the following users. Thus, feeds can include
what people are saying, as well as what they are doing. In
one aspect, feeds are a way to stay up-to-date (e.g. on users,
opportunities, etc.) as well as an opportunity to reach out to
your co workers/partners and engage them around common
goals.

In some embodiments, users can rate feed tracked updates
or messages (including comments). A user can choose to
prioritize a display of a feed so that higher rated feed items
show up higher on a display. For example, in an embodiment
where comments are answers to a specific question, users
can rate the different status posts so that a best answer can
be identified. As another example, users are able to quickly
identify feed items that are most important as those feed
items can be displayed at a top of a list. The order of the feed
items can be based on an importance level (which can be
determined by the database system using various factors,
some of which are mentioned herein) and based on a rating
from users. In one embodiment, the rating is on a scale that
includes at least 3 values. In another embodiment, the rating
is based on a binary scale.

Besides a profile for a user, a group can also be created.
In various embodiments, the group can be created based on
certain criteria that are common to the users, can be created
by inviting users, or can be created by receiving requests to
join from a user. In one embodiment, a group feed can be
created, with messages being added to the group feed when
someone adds a message to the group as a whole. For
example, a group page may have a section for posts. In
another embodiment, a message can be added to a group
feed when a message is added about any one of the mem-
bers. In yet another embodiment, a group feed can include
feed tracked updates about actions of the group as a whole
(e.g. when an administrator changes data in a group profile
or a record owned by the group), or about actions of an
individual member.

FIG. 7 shows an example of a group feed on a group page
according to embodiments. As shown, a feed item 710
shows that a user has posted a document to the group object.
The text “Bill Bauer has posted the document Competitive
Insights” can be generated by the database system in a
similar manner as feed tracked updates about a record being
changed. A feed item 720 shows a post to the group, along
with comments 730.

FIG. 8 shows an example of a record feed containing a
feed tracked update, post, and comments according to
embodiments. Feed item 810 shows a feed tracked update
based on the event of submitting a discount for approval.

US 9,456,044 B2

27

Other feed items show posts that are made to the record and
comments that are made on the posts.

VII. Infrastructure for a Feed

A. Tables Used to Create a Feed

FIG. 9A shows a plurality of tables that may be used in
tracking events and creating feeds according to embodi-
ments. The tables of FIG. 9A may have entries added, or
potentially removed, as part of tracking events in the data-
base from which feed items are creates or that correspond to
feed items. In one embodiment, each tenant has its own set
of tables that are created based on criteria provided by the
tenant.

An event hifeed tracked update table 910 can provide a
hifeed tracked update of events from which feed items are
created. In one aspect, the events are for objects that are
being tracked. Thus, table 910 can store change hifeed
tracked updates for feeds, and the changes can be persisted.
In various embodiments, event hifeed tracked update table
910 can have columns of event ID 911, object ID 912 (also
called parent ID), and created by ID 913. The event ID 911
can uniquely identify a particular event and can start at 1 (or
other number or value).

Each new event can be added chronologically with a new
event 1D, which may be incremented in order. An object ID
912 can be used to track which record or user’s profile is
being changed. For example, the object ID can correspond
to the record whose field is being changed or the user whose
feed is receiving a post. The created by ID 913 can track the
user who is performing the action that results in the event,
e.g., the user that is changing the field or that is posting a
message to the profile of another user.

In some other embodiments, event hifeed tracked update
table 910 can have one or more of the following variables
with certain attributes: ORGANIZATION_ID being CHAR
(15 BYTE), FEEDS_ENTITY_HIFEED TRACKED
UPDATE_ID being CHAR(15 BYTE), PARENT _ID being
CHAR(15 BYTE), CREATED_BY being CHAR(15
BYTE), CREATED_DATE being a variable of type DATE,
DIVISION being a NUMBER, KEY PREFIX being
CHAR(3 BYTE), and DELETED being CHAR(1 BYTE).
The parent ID can provide an ID of a parent object in case
the change is promulgated to the parent. The key prefix can
provide a key that is unique to a group of records, e.g.
custom records (objects). The deleted variable can indicate
that the feed items for the event are deleted, and thus the feed
items are not generated. In one embodiment, the variables
for each event entry or any entry in any of the tables may not
be nullable. In another embodiment, all entries in the event
hifeed tracked update table 910 are used to create feed items
for only one object, as specified by the object ID 912. For
example, one feed tracked update cannot communicate
updates on two records, such as updates of an account field
and an opportunity field.

In one embodiment, a name of an event can also be stored
in table 910. In one implementation, a tenant can specify
events that they want tracked. In an embodiment, event
hifeed tracked update table 910 can include the name of the
field that changed (e.g. old and new values). In another
embodiment, the name of the field, and the values, are stored
in a separate table. Other information about an event (e.g.
text of comment, feed tracked update, post or status update)
can be stored in event hifeed tracked update table 910, or in
other tables, as is now described.

A field change table 920 can provide a hifeed tracked
update of the changes to the fields. The columns of table 920
can include an event ID 921 (which correlates to the event
1D 911), an old value 922 for the field, and the new value 923

5

10

15

20

25

30

35

40

45

55

60

65

28

for the field. In one embodiment, if an event changes more
than one field value, then there can be an entry for each field
changed. As shown, event ID 921 has two entries for event
E37.

In some other embodiments, field change table 920 can
have one or more of the following variables with certain
attributes: ORGANIZATION_ID being CHAR(15 BYTE),
FEEDS_ENTITY_HIFEED TRACKED UPDATE_FIELD-
S_ID being CHAR(15 BYTE) and identifying each entry,
FEEDS_ENTITY_HIFEED TRACKED UPDATE_ID
being CHAR(15 BYTE), FIELD_KEY being VARCHAR?2
(120 BYTE), DATA_TYPE being CHAR(1 BYTE), OLD-
VAL_STRING VARCHAR2 being (765 BYTE),
NEWVAL_STRING being VARCHAR2(765 BYTE), OLD-
VAL_FIRST NAME being VARCHAR2(765 BYTE),
NEWVAL_FIRST_NAME being VARCHAR2(765 BYTE),
OLDVAL_LAST_NAME being VARCHAR2(765 BYTE),
NEWVAL_LAST NAME being VARCHAR2(765 BYTE),
OLDVAL_NUMBER being NUMBER, NEWVAL_NUM-
BER being NUMBER, OLDVAL_DATE being DATE,
NEWVAL_DATE being DATE, and DELETED being
CHAR(1 BYTE). In one embodiment, one or more of the
variables for each entry in any of the tables may be nullable.

In one embodiment, the data type variable (and/or other
variables) is a non-api-insertable field. In another embodi-
ment, variable values can be derived from the record whose
field is being changed. Certain values can be transferred into
typed columns old/new value string, old/new value number
or old/new value date depending upon the derived values. In
another embodiment, there can exist a data type for captur-
ing add/deletes for child objects. The child ID can be tracked
in the foreign-key column of the record. In yet another
embodiment, if the field name is pointing to a field in the
parent entity, a field level security (FLS) can be used when
a user attempts to a view a relevant feed item. Herein,
security levels for objects and fields are also called access
checks and determinations of authorization. In one aspect,
the access can be for create, read, write, update, or delete of
objects.

In one embodiment, the field name (or key) can be either
a field name of the entity or one of the values in a separate
list. For example, changes that do not involve the update of
an existing field (e.g. a close or open) can have a field name
specified in an enumerated list. This enumerated list can
store “special” field name sentinel values for non-update
actions that a tenant wants to track. In one aspect, the API
just surfaces these values and the caller has to check the
enumerated values to see if it is a special field name.

A comment table 930 can provide a hifeed tracked update
of the comments made regarding an event, e.g., a comment
on a post or a change of a field value. The columns of table
930 can include an event ID 921 (which correlates to the
event 1D 911), the comment column 932 that stores the text
of the comment, and the time/date 933 of the comment. In
one embodiment, there can be multiple comments for each
event. As shown, event ID 921 has two entries for event E37.

In some other embodiments, comment table 930 can have
one or more of the following variables with certain attri-
butes: ORGANIZATION_ID being CHAR(15 BYTE),
FEEDS_COMMENTS_ID being CHAR(15 BYTE) and
uniquely identifying each comment, PARENT_ID being
CHAR(15 BYTE), CREATED_BY being CHAR(15
BYTE), CREATED_DATE being DATE, COMMENTS
being VARCHAR2(420 BYTE), and DELETED being
CHAR(1 BYTE).

A user subscription table 940 can provide a list of the
objects being followed (subscribed) by a user. In one

US 9,456,044 B2

29

embodiment, each entry has a user ID 941 of the user doing
the following and one object ID 942 corresponding to the
object being followed. In one implementation, the object
being followed can be a record or a user. As shown, the user
with ID U819 is following object IDs 0615 and 0489. If
user U819 is following other objects, then additional entries
may exist for user U819. Also as shown, user U719 is also
following object O615. The user subscription table 940 can
be updated when a user adds or deletes an object that is being
followed.

In some other embodiments, comment table 940 can be
composed of two tables (one for records being followed and
one for users being followed). One table can have one or
more of the following variables with certain attributes:
ORGANIZATION_ID being CHAR(15 BYTE), ENTITY_
SUBSCRIPTION_ID being CHAR(15 BYTE), PAREN-
T_ID being CHAR(15 BYTE), CREATED_BY being
CHAR(15 BYTE), CREATED_DATE being DATE, and
DELETED being CHAR(1 BYTE). Another table can have
one or more of the following variables with certain attri-
butes: ORGANIZATION_ID being CHAR(15 BYTE),
USER_SUBSCRIPTIONS_ID being CHAR(15 BYTE),
USER_ID being CHAR(15 BYTE), CREATED_BY being
CHAR(15 BYTE), and CREATED_DATE being DATE.

In one embodiment, regarding a profile feed and a news
feed, these are read-only views on the event hifeed tracked
update table 910 specialized for these feed types. Concep-
tually the news feed can be a semi-join between the entity
subscriptions table 940 and the event hifeed tracked update
table 910 on the object IDs 912 and 942 for the user. In one
aspect, these entities can have polymorphic parents and can
be subject to a number of restrictions detailed herein, e.g., to
limit the cost of sharing checks.

In one embodiment, entity feeds are modeled in the API
as a feed associate entity (e.g. AccountFeed, CaseFeed etc).
A feed associate entity includes information composed of
events (e.g. event IDs) for only one particular record type.
Such a list can limit the query (and sharing checks) to a
specific record type. In one aspect, this structuring of the
entity feeds can make the query run faster. For example, a
request for a feed of a particular account can include the
record type of account. In one implementation, an account
feed table can then be searched, where the table has account
record IDs and corresponding event IDs or pointers to
particular event entries in event hifeed tracked update table
910. Since the account feed table only contains some of the
records (not all), the query can run faster.

In one embodiment, there may be objects with no events
listed in the event hifeed tracked update table 910, even
though the record is being tracked. In this case, the database
service can return a result indicating that no feed items exist.

In another embodiment, tables can also exist for audit
tracking, e.g., to examine that operations of the system (e.g.
access checks) are performing accurately. In one embodi-
ment, audit change-hifeed tracked update tables can be
persisted (e.g. in bulk) synchronously in the same transac-
tion as feed events are added to event hifeed tracked update
table 910. In another embodiment, entries to the two sets of
table can be persisted in asynchronous manner (e.g. by
forking a bulk update into a separate java thread). In one
aspect, some updates to any of the tables can get lost if the
instance of the table goes down while the update has not yet
finished. This asynchronous manner can limit an impact
performance on save operations. In some embodiments, a
field “persistence type” (tri state: AUDIT, FEEDS or BOTH)
can be added to capture user preferences, as opposed to
being hardcoded.

10

25

30

40

45

55

30

B. Feed Item

A feed item can represent an individual field change of a
record, creation and deletion of a record, or other events
being tracked for a record or a user. In one embodiment, all
of the feed items in a single transaction (event) can be
grouped together and have the same event ID. A single
transaction relates to the operations that can be performed in
a single communication with the database. In another
embodiment where a feed is an object of the database, a feed
item can be a child of a profile feed, news feed, or entity
feed. If a feed item is added to multiple feeds, the feed item
can be replicated as a child of each feed to which the feed
item is added.

In one implementation, a feed item is visible only when
its parent feed is visible, which can be the same as needing
read access on the feed’s parent (which can be by the type
of record or by a specific record). The feed item’s field may
be only visible when allowed under field-level security
(FLS). Unfortunately, this can mean that the parent feed may
be visible, but the child may not be because of FLS. Such
access rules are described in more detail below. In one
embodiment, a feed item can be read-only. In this embodi-
ment, after being created, the feed item cannot be changed.

In multi-currency organizations, a feed item can have an
extra currency code field. This field can give the currency
code for the currency value in this field. In one aspect, the
value is undefined when the data type is anything other than
currency.

C. Feed Comment

In some embodiments, a comment exists as an item that
depends from feed tracked updates, posts, status updates,
and other items that are independent of each other. Thus, a
feed comment object can exist as a child object of a feed
item object. For example, comment table 930 can be con-
sidered a child table of event hifeed tracked update table
910. In one embodiment, a feed comment can be a child of
a profile feed, news feed, or entity feed that is separate from
other feed items.

In various embodiments, a feed comment can have vari-
ous permissions for the following actions. For read permis-
sion, a feed comment can be visible if the parent feed is
visible. For create permission, if a user has access to the feed
(which can be tracked by the ID of the parent feed), the user
can add a comment. For delete, only a user with modify all
data permission or a user who added the comment can delete
the comment. Also delete permission can require access on
the parent feed. An update of a comment can be restricted,
and thus not be allowed.

In one embodiment, regarding a query restriction, a feed
comment cannot be queried directly, but can be queried only
via the parent feed. An example is “select id, parentid,
(select . . . from feedcomment) from entityfeed”. In another
embodiment, a feed comment can be directly queries, e.g.,
by querying comment table 930. A query could include the
text of a comment or any other column of the table.

In another embodiment, regarding soft delete behavior, a
feed comment table does not have a soft delete column. A
soft delete allows an undelete action. In one implementation,
a record can have a soft delete. Thus, when the record is
deleted, the feed (and its children) can be soft deleted.
Therefore, in one aspect, a feed comment cannot be
retrieved via the “query” verb (which would retrieve only
the comment), but can be retrieved via “queryAll” verb
though. An example is queryAll(“select id, (select id, com-
mentbody from feedcomments) from accountfeed where
parentid="001x000xxx3MkADAAO”); /Iwhere
‘001x000xxx3MKADAAOQ’ has been soft deleted. When a

US 9,456,044 B2

31

hard delete (a physical delete) happens, the comment can be
hard deleted from the database.

In one embodiment, regarding an implicit delete, feeds
with comments are not deleted by a reaper (a routine that
performs deletion). In another embodiment, a user cannot
delete a feed. In yet another embodiment, upon lead convert
(e.g. to an opportunity or contact), the feed items of the lead
can be hard deleted. This embodiment can be configured to
perform such a deletion for any change in record type. In
various implementations, only the comments are hard
deleted upon a lead convert, other convert, or when the
object is deleted (as mentioned above).

In one embodiment, viewing a feed pulls up the most
recent messages or feed tracked updates (e.g. 25) and
searches the most recent (e.g. 4) comments for each feed
item. The comments can be identified via the comment table
930. In one implementation, a user can request to see more
comments, e.g., by selecting a see more link.

In some embodiments, user feeds and/or entity feeds have
a last comment date field. In various embodiments, the last
comment date field is stored as a field of a record or a user
profile. For feeds with no comments, this can be the same as
the created date. Whenever a new comment is created, the
associated feed’s last comment date can be updated with the
created date of the comment. The last comment date is
unchanged if a feed comment is deleted. A use case is to
allow people to order their queries to see the feeds which
have been most recently commented on.

D. Creating Custom Feeds by Customizing the Event
Hifeed Tracked Update Table

In some embodiments, a tenant (e.g. through an admin-
istrator) or a specific user of a tenant can specify the types
of events for which feed items are created. A user can add
more events or remove events from a list of events that get
added to the event hifeed tracked update table 910. In one
embodiment, a trigger can be added as a piece of code, rule,
or item on a list for adding a custom event to the event hifeed
tracked update table 910. These custom events can provide
customers the ability to create their own custom feeds and
custom feed items to augment or replace implicitly gener-
ated feeds via event hifeed tracked update table 910. Implic-
itly generated feed data can be created when feed-tracking is
enabled for certain entities/field-names. In one embodiment,
in order to override implicit feeds, feed tracking can be
turned off and then triggers can be defined by the user to add
events to the event hifeed tracked update table 910. In other
embodiments, users are not allowed to override the default
list of events that are added to table 910, and thus cannot
define their own triggers for having events tracked.

For example, upon lead convert or case close, a default
action to be taken by the system may be to add multiple
events to event hifeed tracked update table 910. If a cus-
tomer (e.g. a tenant or a specific user) does not want each of
these events to show up as feed items, the customer can turn
off tracking for the entities and generate custom feeds by
defining customized triggers (e.g. by using an API) upon the
events. As another example, although data is not changed, a
customer may still want to track an action on a record (e.g.
status changes if not already being tracked, views by certain
people, retrieval of data, etc.).

In one embodiment, if a user does not want a feed item to
be generated upon every change on a given field, but only if
the change exceeds a certain threshold or range, then such
custom feeds can be conditionally generated with the cus-
tomized triggers. In one implementation, the default tracking
for the record or user may be turned off for this customiza-
tion so that the events are only conditionally tracked. In

25

30

40

45

55

60

32

another implementation, a trigger can be defined that deletes
events that are not desired, so that default tracking can still
be turned on for a particular object type. Such conditional
tracking can be used for other events as well.

In some embodiments, defining triggers to track certain
events can be done as follows. A user can define an object
type to track. This object type can be added to a list of
objects that can be tracked for a particular tenant. The tenant
can remove object types from this list as well. Custom
objects and standard objects can be on the list, which may,
for example, be stored in cache or RAM of a server or in the
database. Generally only one such list exists for a tenant, and
users do not have individual lists for themselves, although in
some embodiments, they may particularly when the number
of users in a tenant is small.

In one embodiment, a tenant can select which records of
an object type are to be tracked. In another embodiment,
once an object type is added to the tracking list of object
types, then all records of that type are tracked. The tenant
can then specify the particulars of how the tracking is to be
performed. For example, the tenant can specify triggers as
described above, fields to be tracked, or any of the customi-
zations mentioned herein.

In some embodiments, when a feed is defined as an object
in the database (e.g. as a child object of entity records that
can be tracked), a particular instance of the feed object (e.g.
for a particular record) can be create-able and delete-able. In
one embodiment, if a user has access to a record then the
user can customize the feed for the record. In one embodi-
ment, a record may be locked to prevent customization of its
feed.

One method of creating a custom feed for users of a
database system according to embodiments is now
described. Any of the following steps can be performed
wholly or partially with the database system, and in particu-
lar by one or more processor of the database system.

In step A, one or more criteria specifying which events are
to be tracked for possible inclusion into a feed to be
displayed are received from a tenant. In step B, data indica-
tive of an event is received. In step C, the event is analyzed
to determine if the criteria are satisfied. In step D, if the
criteria are satisfied, at least a portion of the data is added to
a table (e.g. one or more of the tables in FIG. 9A) that tracks
events for inclusion into at least one feed for a user of the
tenant. The feed in which feed items of an event may
ultimately be displayed can be a news feed, record feed, or
a profile feed.

E. Creating Custom Feeds with Filtering

After feed items have been generated, they can be filtered
so that only certain feed items are displayed, which may be
tailored to a specific tenant and/or user. In one embodiment,
a user can specify changes to a field that meet certain criteria
for the feed item to show up in a feed displayed to the user,
e.g., a newsfeed or even an entity feed displayed directly to
the user. In one implementation, the criteria can be com-
bined with other factors (e.g. number of feed items in the
feed) to determine which feed items to display. For instance,
if a small number of feed items exist (e.g. below a thresh-
0ld), then all of the feed items may be displayed.

In one embodiment, a user can specity the criteria via a
query on the feed items in his/her new feed, and thus a feed
may only return objects of a certain type, certain types of
events, feed tracked updates about certain fields, and other
criteria mentioned herein. Messages can also be filtered
according to some criteria, which may be specified in a
query. Such an added query can be added onto a standard
query that is used to create the newsfeed for a user. A first

US 9,456,044 B2

33

user could specify the users and records that the first user is
following in this manner, as well as identify the specific feed
items that the first user wants to follow. The query could be
created through a graphical interface or added by a user
directly in a query language. Other criteria could include
receiving only posts directed to a particular user or record,
as opposed to other feed items.

In one embodiment, the filters can be run by defining code
triggers, which run when an event, specific or otherwise,
occurs. The trigger could then run to perform the filtering at
the time the event occurs or when a user (who has certain
defined triggers, that is configured for a particular user)
requests a display of the feed. A trigger could search for
certain terms (e.g. vulgar language) and then remove such
terms or not create the feed item. A trigger can also be used
to send the feed item to a particular person (e.g. an admin-
istrator) who does not normally receive the feed item were
it not for the feed item containing the flagged terms.

F. Access Checks

In one embodiment, a user can access a feed of a record
if the user can access the record. The security rules for
determining whether a user has access to a record can be
performed in a variety of ways, some of which are described
in U.S. patent application Ser. No. 11/866,184. For example,
a security level table can specify whether a user can see a
particular type of record and/or particular records. In one
implementation, a hierarchy of positions within a tenant is
used. For example, a manager can inherit the access levels
of employees that the manager supervises. Field level secu-
rity (FLS) can also be used to determine whether a particular
feed tracked update about an update to a field can be seen by
the user. The field change table 920 can be used to identify
a field name or field ID, and then whether the user has read
access to that field can be determined from an FLS table. For
example, if a user could not see a field of a social security
number, the feed of the user provided to the user would not
include any feed items related to the social security number
field.

In one embodiment, a user can edit a feed of a record if
the user has access to the record, e.g., deleting or editing a
feed item. In another embodiment, a user (besides an admin-
istrator) cannot edit a feed item, except for performing an
action from which a feed item can be created. In one
implementation, a user is required to have access to a
particular record and field for a feed item to be created based
on an action of the user. In this case, an administrator can be
considered to be a user with MODIFY-ALL-DATA security
level. In yet another embodiment, a user who created the
record can edit the feed.

G. Posts

In one embodiment, the text of posts are stored in a child
table (post table 950), which can be cross-referenced with
event hifeed tracked update table 910. Post table 950 can
include event ID 951 (to cross-reference with event ID 911),
post text 952 to store the text of the post, and time/date 953.
An entry in post table 950 can be considered a feed post
object. Posts for a record can also be subject to access
checks. In one implementation, if a user can view a record
then all of the posts can be seen, i.e. there is not an additional
level of security check as there is for FLS. In another
implementation, an additional security check could be done,
e.g., by checking on whether certain keywords (or phrases)
exist in the post. For instance, a post may not be not provided
to specified users if a certain keyword exists, or only
provided to specified users if a keyword exists. In another
embodiment, a table can exist for status updates.

10

15

20

25

30

35

40

45

50

55

60

65

34

VIII. Subscribing to Users and Records to Follow

As described above, a user can follow users, groups, and
records. Embodiments can provide mechanisms for a user to
manage which users, groups, and records that the user is
currently following. In one embodiment, a user can be
limited to the number of users and records (collectively or
separately) that the user can follow. For example, a user may
be restricted to only following 10 users and 15 records, or as
another example, 25 total. Alternatively, the user may be
permitted to follow more or less users.

In one embodiment, a user can go to a page of a record and
then select to follow that object (e.g., with a button marked
“follow” or “join”). In another embodiment, a user can
search for a record and have the matching records show up
in a list. The search can include criteria of records that the
user might want to follow. Such criteria can include the
owner, the creation date, last comment date, and numerical
values of particular fields (e.g. an opportunity with a value
of more than $10,000).

A follow button (or other activation object) can then
reside next to each record in the resulting list, and the follow
button can be selected to start following the record. Simi-
larly, a user can go to a profile page of a user and select to
follow the user, or a search for users can provide a list, where
one or more users can be selected for following from the list.
The selections of subscribing and unsubscribing can add and
delete rows in table 920.

In some embodiments, a subscription center acts as a
centralized place in a database application (e.g. application
platform 18) to manage which records a user subscribes to,
and which field updates the user wants to see in feed tracked
updates. The subscription center can use a subscription table
to keep track of the subscriptions of various users. In one
embodiment, the subscription center shows a list of all the
items (users and records) a user is subscribed to. In another
embodiment, a user can unsubscribe to subscribed objects
from the subscription center.

A. Automatic Subscription

In one embodiment, an automatic subscription feature can
ensure that a user is receiving certain feeds. In this manner,
a user does not have to actively select certain objects to
follow. Also, a tenant can ensure that a user is following
objects that the user needs to be following.

In various embodiments for automatically following
users, a default for small organizations can be to follow
everyone. For big organizations, the default can be to follow
a manager and peers. If a user is a manager, the default can
be to follow the manager’s supervisor, peers, and people that
the manager supervises (subordinates). In other embodi-
ments for automatically following records, records that the
user owns may be automatically followed and/or records
recently viewed (or changed) may be automatically fol-
lowed.

In one example, a new record is created. The owner (not
necessarily the user who created the entity) is subscribed to
the entity. If ownership is changed, the new owner may
automatically be subscribed to follow the entity. Also, after
a lead convert, the user doing the lead convert may be
automatically subscribed to the new account, opportunity, or
contact resulting from the lead convert. In one implemen-
tation, the auto subscription is controlled by user preference.
That is a user or tenant can have the auto subscribe feature
enabled or not. In one aspect, the default is to have the
auto-subscribe turned on.

FIG. 9B shows a flowchart illustrating a method 900 for
automatically subscribing a user to an object in a database
system according to embodiments. Any of the following

US 9,456,044 B2

35

steps can be performed wholly or partially with the database
system, and in particular by one or more processor of the
database system.

In step 901, one or more properties of an object stored in
the database system are received. The properties can be
received from administrators of the database system, or from
users of the database system (which may be an administrator
of'a customer organization). The properties can be records or
users, and can include any of the fields of the object that are
stored in the database system. Examples of properties of a
record include: an owner of the record, a user that converted
the record from one record type to another record type,
whether the first user has viewed the record, and a time the
first user viewed the record. Examples of properties of a user
include: which organization (tenant) the user is associated
with, the second user’s position in the same organization,
and which other users the user had e-mailed or worked with
on projects.

In step 902, the database system receives one or more
criteria about which users are to automatically follow the
object. The criteria can be received from administrators of
the database system, or from one or more users of the
database system. The users may be an administrator of a
customer organization, which can set tenant-wide criteria or
criteria for specific users (who may also set the criteria
themselves). Examples of the criteria can include: an owner
or creator of a record is to follow the record, subordinates of
an owner or creator of a record are to follow the record, a
user is to follow records recently viewed (potentially after a
specific number of views), records that a user has changed
values (potentially with a date requirement), records created
by others in a same business group as the user. Examples of
the criteria can also include: a user is to follow his/her
manager, the user’s peers, other users in the same business
group as the user, and other users that the user has e-mailed
or worked with on a project. The criteria can be specific to
a user or group of users (e.g. users of a tenant).

In step 903, the database system determines whether the
one or more properties of the object satisfy the one or more
criteria for a first user. In one embodiment, this determina-
tion can occur by first obtaining the criteria and then
determining objects that satisfy the criteria. The determina-
tion can occur periodically, at time of creation of an object,
or at other times. If different users have different criteria,
then the criteria for a particular user or group could be
searched at the same time. Since users of different tenants
normally cannot view objects of another tenant, certain
criteria does not have to be checked. In another embodiment,
this determination can occur by looking at certain properties
and then identifying any criteria that are met. In yet another
embodiment, the criteria and properties can be used to find
users that satisfy the criteria.

In step 904, if the criteria are satisfied, the object is
associated with the first user. The association can be in a list
that stores information as to what objects are being followed
by the first user. User subscription table 940 is an example
of such a list. In one embodiment, the one or more criteria
are satisfied if one property satisfies at least one criteria.
Thus, if the criteria is that a user follows his/her manager and
the object is the user’s manager, then the first user will
follow the object.

In one embodiment, a user can also be automatically
unsubscribed, e.g. if a certain action happens. The action
could be a change in the user’s position within the organi-
zation, e.g. a demotion or becoming a contractor. As another
example, if a case gets closed, then users following the case
may be automatically unsubscribed.

10

15

20

25

30

35

40

45

50

55

60

65

36

B. Feed and Subscription API

In one embodiment, a feed and subscription center API
can enable tenants to provide mechanisms for tracking and
creating feed items, e.g., as described above for creating
custom feeds by allowing users to add custom events for
tracking. For example, after some initial feed items are
created (e.g. by administrators of the database system),
outside groups (e.g. tenants or software providers selling
software to the tenants) can ‘enable objects’ for feeds
through a standard API. The groups can then integrate into
the subscription center and the feed tracked update feeds on
their own. In one embodiment, the feed and subscription
center API can use a graphical user interface implemented
for the default feed tracking. In one embodiment, API
examples include subscribing to an entity by creating a new
entity subscription object for a particular user ID, or for all
users of a tenant (e.g. user subscription table 940). In one
embodiment, obtaining all subscriptions for a given user can
be performed by using a query, such as “select . . . from
EntitySubscription where userid=" . . . *”.

Some embodiments have restriction on non-admin users,
e.g. those without view all data permissions (VAD). One
restriction can be a limit clause on entity subscription
queries (e.g. queries on user subscription table 940), e.g.,
where the limit of the number of operations is less than 100.
In one embodiment, users are not required to specify an
order-by, but if an order-by is specified they can only order
on fields on the entity subscription entity. In one implemen-
tation, filters on entity subscription can likewise only specify
fields on the entity subscription entity. In one aspect, the
object ID being followed can be sorted or filtered, but not the
object name.

In one embodiment, one or more restrictions can also be
placed on the identification of feed items in a feed that a user
can access. For example, if a low-level user (i.e. user can
access few objects) is attempting to see a profile feed of a
high level user, a maximum number of checks (e.g. 500) for
access rights may be allowed. Such a restriction can mini-
mize a cost of a feed request. In some embodiments, there
are restriction on the type of queries (e.g. fields for filtering)
allowed to construct on feeds (e.g. on tables in FIG. 9A).

C. Sharing

As mentioned above, users may be restricted from seeing
records from other tenants, as well as certain records from
the tenant to which the user belongs (e.g. the user’s
employer). Sharing rules can refer to the access rules that
restrict a user from seeing records that the user is not
authorized to see or access. Additionally, in one implemen-
tation, a user may be restricted to only seeing certain fields
of a record, field-level security (FLS).

In an embodiment, access rule checks are done upon
subscription. For example, a user is not allowed to subscribe
to a record or type of record that the user cannot access. In
one aspect, this can minimize (but not necessarily eliminate)
cases where a user subscribes to entities they cannot access.
Such cases can slow down news feed queries, when an
access check is performed (which can end up removing
much of the feed items). Thus, a minimization of access
checks can speed up operation. In another embodiment,
when feed items are created dynamically, access rule checks
may be done dynamically at the time of subsequent access,
and not upon subscription or in addition to at time of
subscription.

An example case where access checks are still performed
is when a first user follows a second user, but the second user
performs some actions on records or is following records
that the first user is not allowed to see. The first user may be

US 9,456,044 B2

37

allowed to follow the second user, and thus the subscription
is valid even though the first user may not be able to see all
of the feed items. Before a feed tracked update is provided
to a news feed of the first user, a security check may be
performed to validate whether the first user has access rights
to the feed item. If not, the feed item is not displayed to the
first user. In one implementation, users can be blocked from
feed items that contain certain terms, symbols, account
numbers, etc. In one embodiment, any user can follow
another user. In another embodiment, users may be restricted
as to which users, objects, and/or records he/she can follow.

Regarding viewing privileges of a feed, in one embodi-
ment, a user can always see all of his own subscriptions
(even if he’s lost read access to a record). For example, a
user can become a contractor, and then the user may lose
access to some records. But, the user may still see that he/she
is following the object. This can help if there is a limit to the
number of objects that can be followed. To unsubscribe a
user may need to know what they are following so they can
unsubscribe and subscribe to objects the user can see. In
another embodiment, for access to other people’s subscrip-
tions, a user can be required to need read-access on the
record-id to see the subscription. In some embodiments,
users with authorization to modify all data can create/delete
any subscription. In other embodiments, a user can create/
delete subscriptions only for that user, and not anyone else.

D. Configuration of which Field to Follow

There can be various feed settings for which feed items
get added to profile and record feeds, and which get added
to news feeds. In one embodiment, for profile feeds and
entity feeds, feed tracked updates can be written for all
standard and custom fields on the supported objects. In one
implementation, feed settings can be set to limit how many
and which fields of a record are tracked for determining
whether a feed tracked update is to be generated. For
example, a user or administrator can choose specific fields to
track and/or certain ones not to track. In another embodi-
ment, there is a separate limit for the number of trackable
fields (e.g. 20) for a record. Thus, only certain changes may
be tracked in an entity hifeed tracked update and show up in
the feed. In yet another embodiment, default fields may be
chosen for tracking, where the defaults can be exposed in the
subscriptions center.

IX. Adding Items to a Feed

As described above, a feed includes feed items, which
include feed tracked updates and messages, as defined
herein. Various feeds can be generated. For example, a feed
can be generated about a record or about a user. Then, users
can view these feeds. A user can separately view a feed of
a record or user, e.g., by going to a home page for the user
or the record. As described above, a user can also subscribe
(follow) to user or record and receive the feed items of those
feeds through a separate feed application (e.g. in a page or
window), which is termed “chatter” in certain examples. The
feed application can provide each of the feeds that a user is
following in a single news feed.

A feed generator can refer to any software program
running on a processor or a dedicated processor (or combi-
nation thereof) that can generate feed items (e.g. feed
tracked updates or messages) and combine them into a feed.
In one embodiment, the feed generator can generate a feed
item by receiving a feed tracked update or message, iden-
tifying what feeds the item should be added to, and adding
the feed. Adding the feed can include adding additional
information (metadata) to the feed tracked update or mes-
sage (e.g. adding a document, sender of message, a deter-
mined importance, etc.). The feed generator can also check

20

35

40

45

38

to make sure that no one sees feed tracked updates for data
that they don’t have access to see (e.g. according to sharing
rules). A feed generator can run at various times to pre-
compute feeds or to compute them dynamically, or combi-
nations thereof.

In one embodiment, the feed generator can de-dupe events
(i.e. prevent duplicates) that may come in from numerous
records (and users). For example, since a feed tracked
update can be published to multiple feeds (e.g. John Choe
changed the Starbucks Account Status) and a person can be
subscribed to both the Starbucks account and John Choe,
embodiments can filter out duplicates before adding or
displaying the items in a news feed. Thus, the Feed Gen-
erator can collapse events with multiple records and users
for a single transaction into a single feed tracked update and
ensure the right number of feed tracked updates for the
particular feed. In some embodiments, an action by a user
does not create a feed item for that user (e.g. for a profile
feed of that user), and it is only the feed of the object being
acted upon (e.g. updated) for which a feed item is created.
Thus, there should not be duplicates. For example, if some-
one updates the status of a record, the feed item is only for
the record and not the user.

In one embodiment, processor 417 in FIG. 4 can identify
an event that meets criteria for a feed tracked update, and
then generate the feed tracked update. Processor 417 can
also identify a message. For example, an application inter-
face can have certain mechanisms for submitting a message
(e.g. “submit” buttons on a profile page, detail page of a
record, “comment” button on post), and use of these mecha-
nisms can be used to identify a message to be added to a
table used to create a feed or added directly to a list of feed
items ready for display.

A. Adding Items to a Pre-Computed Feed

In some embodiments, a feed of feed items is created
before a user requests the feed. Such an embodiment can run
fast, but have high overall costs for storage. In one embodi-
ment, once a profile feed or a record feed has been created,
a feed item (messages and feed tracked updates) can be
added to the feed. The feed can exist in the database system
in a variety of ways, such as a related list. The feed can
include mechanisms to remove items as well as add them.

As described above, a news feed can be an aggregated
feed of all the record feeds and profile feeds to which a user
has subscribed. The news feed can be provided on the home
page of the subscribing user. Therefore, a news feed can be
created by and exist for a particular user. For example, a user
can subscribe to receive entity feeds of certain records that
are of interest to the user, and to receive profile feeds of
people that are of interest (e.g. people on a same team, that
work for the user, are a boss of the user, etc.). A news feed
can tell a user about all the actions across all the records (and
people) who have explicitly (or implicitly) subscribed to via
the subscriptions center (described above).

In one embodiment, only one instance of each feed
tracked update is shown on a user’s news feed, even if the
feed tracked update is published in multiple entities to which
the user is subscribed. In one aspect, there may be delays in
publishing news articles. For example, the delay may be due
to queued up messages for asynchronous entity hifeed
tracked update persistence. Different feeds may have differ-
ent delays (e.g. delay for new feeds, but none of profile and
entity feeds). In another embodiment, certain feed tracked
updates regarding a subscribed profile feed or an entity feed
are not shown because the user is not allowed access, e.g.
due to sharing rules (which restrict which users can see
which data). Also, in one embodiment, data of the record

US 9,456,044 B2

39

that has been updated (which includes creation) can be
provided in the feed (e.g. a file or updated value of a feed can
be added as a flash rendition).

Examples are provided below as how it can be determined
which feed items to add to which news feeds. In one
embodiment, the addition of items to a news feed is driven
by the following user. For example, the user’s profile can be
checked to determine objects the user is following, and the
database may be queried to determine updates to these
objects. In another embodiment, the users and records being
followed drive the addition of items to a news feed. Embodi-
ments can also combine these and other aspects. In one
embodiment, a database system can be follower-driven if the
number of subscriptions (users and records the user is
following) is small. For example, since the number sub-
scriptions are small, then changes to a small number of
objects need to be checked for the follower.

Regarding embodiments that are follower-driven, one
embodiment can have a routine run for a particular user. The
routine knows the users and records that the user is follow-
ing. The routine can poll the database system for new feed
tracked updates and messages about the users and records
that are being followed. In one implementation, the polling
can be implemented as queries. In one embodiment, the
routine can run at least partially (even wholly) on a user
device.

Regarding embodiments where a news feed is driven by
the record (or user) being followed, processor 417 can
identify followers of the record after a feed item is added to
the record feed. Processor 417 can retrieve a list of the
followers from the database system. The list can be associ-
ated with the record, and can be stored as a related list or
other object that is a field or child of the record.

In one embodiment, profile and record feeds can be
updated immediately with a new feed item after an action is
taken or an event occurs. A news feed can also be updated
immediately. In another embodiment, a news feed can be
updated in batch jobs, which can run at periodic times.

B. Dynamically Generating Feeds

In some embodiments, a feed generator can generate the
feed items dynamically when a user requests to see a
particular feed, e.g., a profile feed, entity feed, or the user’s
news feed. In one embodiment, the most recent feed items
(e.g. top 50) are generated first. In one aspect, the other feed
items can be generated as a background process, e.g., not
synchronously with the request to view the feed. However,
since the background process is likely to complete before a
user gets to the next 50 feed items, the feed generation may
appear synchronous. In another aspect, the most recent feed
items may or may not include comments, e.g., that are tied
to feed tracked updates or posts.

In one embodiment, the feed generator can query the
appropriate subset of tables shown in FIG. 9A and/or other
tables as necessary, to generate the feed items for display.
For example, the feed generator can query the event hifeed
tracked update table 910 for the updates that occurred for a
particular record. The ID of the particular record can be
matched against the ID of the record. In one embodiment,
changes to a whole set of records can be stored in one table.
The feed generator can also query for status updates, posts,
and comments, each of which can be stored in different parts
of'a record or in separate tables, as shown in FIG. 9A. What
gets recorded in the entity hifeed tracked update table (as
well as what is displayed) can be controlled by a feed
settings page in setup, which can be configurable by an
administrator and can be the same for the entire organiza-
tion, as is described above for custom feeds.

10

15

20

25

30

35

40

45

50

55

60

65

40

In one embodiment, there can be two feed generators. For
example, one generator can generate the record and profile
feeds and another generator can generate news feeds. For the
former, the feed generator can query identifiers of the record
or the user profile. For the latter, the news feed generator can
query the subscribed profile feeds and record feeds, e.g.,
user subscription table 940. In one embodiment, the feed
generator looks at a person’s subscription center to decide
which feeds to query for and return a list of feed items for
the user. The list can be de-duped, e.g., by looking at the
event number and values for the respective table, such as
field name or 1D, comment ID, or other information.

C. Adding Information to Feed Hifeed Tracked Update
Tables

FIG. 10 is a flowchart of a method 1000 for saving
information to feed tracking tables according to embodi-
ments. In one embodiment, some of the steps may be
performed regardless of whether a specific event or part of
an event (e.g. only one field of an update is being tracked)
is being tracked. In various embodiments, a processor or set
of processors (hardwired or programmed) can perform
method 1000 and any other method described herein.

In step 1010, data indicative of an event is received. The
data may have a particular identifier that specifies the event.
For example, there may be a particular identifier for a field
update. In another embodiment, the transaction may be
investigated for keywords identifying the event (e.g., terms
in a query indicating a close, change field, or create opera-
tions).

In step 1020, it is determined whether the event is being
tracked for inclusion into feed tables. The determination of
what is being tracked can be based on a tenant’s configu-
ration as described above. In one aspect, the event has an
actor (person performing an event), and an object of the
event (e.g. record or user profile being changed).

In step 1030, the event is written to an event hifeed
tracked update table (e.g. table 910). In one embodiment,
this feed tracking operation can be performed in the same
transaction that performs a save operation for updating a
record. In another embodiment, a transaction includes at
least two roundtrip database operations, with one roundtrip
being the database save (write), and the second database
operation being the saving of the update in the hifeed tracked
update table. In one implementation, the event hifeed
tracked update table is chronological. In another implemen-
tation, if user A posts on user B’s profile, then user A is under
the “created by” 913 and user B is under the object ID 912.

In step 1040, a field change table (e.g. field change table
920) can be updated with an entry having the event identifier
and fields that were changed in the update. In one embodi-
ment, the field change table is a child table of the event
hifeed tracked update table. This table can include informa-
tion about each of the fields that are changed. For example,
for an event that changes the name and balance for an
account record, an entry can have the event identifier, the old
and new name, and the old and new balance. Alternatively,
each field change can be in a different row with the same
event identifier. The field name or ID can also be included
to determine which field the values are associated.

In step 1050, when the event is a post, a post table (e.g.
post table 950) can be updated with an entry having the
event identifier and text of the post. In one embodiment, the
field change table is a child table of the event hifeed tracked
update table. In another embodiment, the text can be iden-
tified in the transaction (e.g. a query command), stripped
out, and put into the entry at the appropriate column. The
various tables described herein can be combined or sepa-

US 9,456,044 B2

41

rated in various ways. For example, the post table and the
field change table may be part of the same table or distinct
tables, or may include overlapping portions of data.

In step 1060, a comment is received for an event and the
comment is added to a comment table (e.g. comment table
930). The comment could be for a post or an update of a
record, from which a feed tracked update can be generated
for display. In one embodiment, the text can be identified in
the transaction (e.g. a query command), stripped out, and put
into the entry at the appropriate column.

D. Reading Information from Feed Hifeed Tracked
Update Tables

FIG. 11 is a flowchart of a method 1100 for reading a feed
item as part of generating a feed for display according to
embodiments. In one embodiment, the feed item may be
read as part of creating a feed for a record.

In step 1110, a query is received for an event hifeed
tracked update table (e.g. event hifeed tracked update table
910) for events related to a particular record. In one embodi-
ment, the query includes an identifier of the record for which
the feed is being requested. In various embodiments, the
query may be initiated from a detail page of the record, a
home page of a user requesting the record feed, or from a
listing of different records (e.g. obtained from a search or
from browsing).

In step 1120, the user’s security level can be checked to
determine if the user can view the record feed. Typically, a
user can view a record feed, if the user can access the record.
This security check can be performed in various ways. In
one embodiment, a first table is checked to see if the user has
a classification (e.g. a security level that allows him to view
records of the given type). In another embodiment, a second
table is checked to see if the user is allowed to see the
specific record. The first table can be checked before the
second table, and both tables can be different sections of a
same table. If the user has requested the feed from the detail
page of the record, one embodiment can skip the security
level check for the record since the check was already done
when the user requested to view the detail page.

In one embodiment, a security check is determined upon
each request to view the record feed. Thus, whether or not
a feed item is displayed to a user is determined based on
access rights, e.g., when the user requests to see a feed of a
record or a news feed of all the objects the user is following.
In this manner, if a user’s security changes, a feed automati-
cally adapts to the user’s security level when it is changed.
In another embodiment, a feed can be computed before
being requested and a subsequent security check can be
made to determine whether the person still has access right
to view the feed items. The security (access) check may be
at the field level, as well as at the record level.

In step 1130, if the user can access the record, the a field
level security table can be checked to determine whether the
user can see particular fields. In one implementation, only
those fields are displayed to the user. Alternatively, a subset
of those the user has access to is displayed. The field level
security check may optionally be performed at the same time
and even using the same operation as the record level check.
In addition, the record type check may also be performed at
this time. If the user can only see certain fields, then any feed
items related to those fields (e.g. as determined from field
change table 920) can be removed from the feed being
displayed.

In step 1140, the feed items that the user has access to are
displayed. In one embodiment, a predetermined number
(e.g. 20) of feed items are displayed at a time. The method
can display the first 20 feed items that are found to be

10

15

20

25

30

35

40

45

50

55

60

65

42

readable, and then determine others while the user is view-
ing the first 20. In another embodiment, the other feed items
are not determined until the user requests to see them, e.g.,
by activating a see more link.

FIG. 12 is a flowchart of a method 1200 for reading a feed
item of a profile feed for display according to embodiments.
In one embodiment, the query includes an identifier of the
user profile feed that is being requested. Certain steps may
be optional, as is also true for other methods described
herein. For example, security checks may not be performed.

In step 1210, a query is directed to an event hifeed tracked
update table (e.g. event hifeed tracked update table 910) for
events having a first user as the actor of the event (e.g.
creation of an account) or on which the event occurred (e.g.
a post to the user’s profile). In various embodiments, the
query may be initiated by a second user from the user’s
profile page, a home page of a user requesting the profile
feed (e.g. from a list of users being followed), or from a
listing of different users (e.g. obtained from a search or from
browsing). Various mechanisms for determining aspects of
events and obtaining information from tables can be the
same across any of the methods described herein.

In step 1220, a security check may also be performed on
whether the second user can see the first user’s profile. In
one embodiment any user can see the profile of another user
of the same tenant, and step 1220 is optional.

In step 1230, a security (access) check can be performed
for the feed tracked updates based on record types, records,
and/or fields, as well security checks for messages. In one
embodiment, only the feed tracked updates related to records
that the person has updated are the ones that need security
check as the feed items about the user are readable by any
user of the same tenant. Users of other tenants are not
navigable, and thus security can be enforced at a tenant
level. In another embodiment, messages can be checked for
keywords or links to a record or field that the second user
does not have access.

As users can have different security classifications, it is
important that a user with a low-level security cannot see
changes to records that have been performed by a user with
high-level security. In one implementation, each feed item
can be checked and then the viewable results displayed, but
this can be inefficient. For example, such a security check
may take a long time, and the second user would like to get
some results sooner rather than later. The following steps
illustrate one embodiment of how security might be checked
for a first user that has a lot of feed items, but the second user
cannot see most of them. This embodiment can be used for
all situations, but can be effective in the above situation.

In step 1231, a predetermined number of entries are
retrieved from the event hifeed tracked update table (e.g.
starting from the most recent, which may be determined
from the event identifier). The retrieved entries may just be
ones that match the user ID of the query. In one embodiment,
entries are checked to find the entries that are associated with
the user and with a record (i.e. not just posts to the user
account). In another embodiment, those entries associated
with the user are allowed to be viewed, e.g. because the
second user can see the profile of the first user as determined
in step 1220.

In step 1232, the record identifiers are organized by type
and the type is checked on whether the second user can see
the record types. Other checks such as whether a record was
manually shared (e.g. by the owner) can also be performed.
In one embodiment, the queries for the different types can be
done in parallel.

US 9,456,044 B2

43

In step 1233, if a user can see the record type, then a check
can be performed on the specific record. In one embodiment,
if a user can see a record type, then the user can see all of
the records of that type, and so this step can be skipped. In
another embodiment, the sharing model can account for
whether a user below the second user (e.g. the second user
is a manager) can see the record. In such an embodiment, the
second user may see such a record. In one implementation,
if a user cannot see a specific record, then comments on that
record are also not viewable.

In step 1234, field level sharing rules can be used to
determine whether the second user can see information
about an update or value of certain fields. In one embodi-
ment, messages can be analyzed to determine if reference to
aparticular field name is made. If so, then field level security
can be applied to the messages.

In step 1280, steps 1231-1234 are repeated until a stop-
ping criteria is met. In one embodiment, the stopping criteria
may be when a maximum number (e.g. 100) of entries that
are viewable have been identified. In another embodiment,
the stopping criteria can be that a maximum number (e.g.
500) of entries from the entity hifeed tracked update table
have been analyzed, regardless of whether the entries are
viewable or not.

In one embodiment, a news feed can be generated as a
combination of the profile feeds and the entity feeds, e.g. as
described above. In one implementation, a list of records and
user profiles for the queries in steps 1110 and 1210 can be
obtained form user subscription table 940. In one embodi-
ment, there is a maximum number of objects that can be
followed.

In various embodiments, the entity hifeed tracked update
table can be queried for any one or more of the following
matching variables as part of determining items for a feed:
CreatedDate, CreatedByld, CreatedBy.FirstName, Created-
By.LastName, Parentld, and Parent.Name. The child tables
can also be queried for any one or more of the following
matching variables as part of determining items for a feed:
DataType, FieldName, OldValue, and NewValue. A query
can also specify how the resulting feed items can be sorted
for display, e.g., by event number, date, importance, etc. The
query can also include a number of items to be returned,
which can be enforced at the server.

The two examples provided above can be done periodi-
cally to create the feeds ahead of time or done dynamically
at the time the display of a feed is requested. Such a dynamic
calculation can be computationally intensive for a news
feed, particularly if many users and records are being
followed, although there can be a low demand for storage.
Accordingly, one embodiment performs some calculations
ahead of time and stores the results in order to create a news
feed.

E. Partial Pre-Computing of Items for a Feed

FIG. 13 is a flowchart of a method 1300 of storing event
information for efficient generation of feed items to display
in a feed according to embodiments. In various embodi-
ments, method 1300 can be performed each time an event is
written to the events hifeed tracked update table, or peri-
odically based on some other criteria (e.g. every minute,
after five updates have been made, etc.).

In step 1310, data indicative of an event is received. The
data may be the same and identified in the same way as
described for step 1010. The event may be written to an
event hifeed tracked update table (e.g. table 910).

In step 1320, the object(s) associated with the event are
identified. In various embodiments, the object may be iden-
tified by according to various criteria, such as the record

10

15

20

25

30

35

40

45

50

55

60

65

44

being changed, the user changing the record, a user posting
a message, and a user whose profile the message is being
posted to.

In step 1330, the users following the event are deter-
mined. In one embodiment, one or more objects that are
associated with the event are used to determine the users
following the event. In one implementation, a subscription
table (e.g. table 940) can be used to find the identified
objects. The entries of the identified objects can contain an
identifier (e.g. user ID 941) of each the users following the
object

In step 1340, the followers of the event are written to a
news feed table along with an event identifier. In one
embodiment, each follower is added as a separate entry into
the news feed table along with the event ID. In another
embodiment, each of the events for a user is added as a new
column for the row of the user. In yet another embodiment,
more columns (e.g. columns from the other tables) can be
added.

News feed table 960 shows an example of such a table
with user ID 961 and event ID or pointer 962. The table can
be organized in any manner. One difference from event
hifeed tracked update table 910 is that one event can have
multiple entries (one for each subscriber) in the news feed
table 960. In one embodiment, all of the entries for a same
user are grouped together, e.g., as shown. The user U819 is
shown as following events E37 and E90, and thus any of the
individual feed items resulting from those events. In another
embodiment, any new entries are added at the end of the
table. Thus, all of the followers for a new event can be added
as a group. In such an embodiment, the event IDs would
generally be grouped together in the table. Of course, the
table can be sorted in any suitable manner.

In an embodiment, if the number of users is small, then
the feed items in one or more of the tables may be written
as part of the same write transaction. In one implementation,
the determination of small depends on the number of
updates performed for the event (e.g. a maximum number of
update operations may be allowed), and if more operations
are performed, then the addition of the feed items is per-
formed. In one aspect, the number of operations can be
counted by the number of rows to be updated, including the
rows of the record (which depends on the update event), and
the rows of the hifeed tracked update tables, which can
depend on the number of followers. In another embodiment,
if the number of users is large, the rest of the feed items can
be created by batch. In one embodiment, the feed items are
always written as part of a different transaction, i.e., by batch
job.

In one embodiment, security checks can be performed
before an entry is added to the news feed table 960. In this
manner, security checks can be performed during batch jobs
and may not have to be performed at the time of requesting
a news feed. In one implementation, the event can be
analyzed and if access is not allowed to a feed item of the
event, then an entry is not added. In one aspect, multiple feed
items for a same user may not result from a same event (e.g.
by how an event is defined in table 910), and thus there is
no concern about a user missing a feed item that he/she
should be able to view.

In step 1350, a request for a news feed is received from
a user. In one embodiment, the request is obtained when a
user navigates to the user’s home page. In another embodi-
ment, the user selects a table, link, or other page item that
causes the request to be sent.

In step 1360, the news feed table and other tables are
accessed to provide displayable feed items of the news feed.

US 9,456,044 B2

45

The news feed can then be displayed. In one embodiment,
the news feed table can then be joined with the event hifeed
tracked update table to determine the feed items. For
example, the news feed table 960 can be searched for entries
with a particular user ID. These entries can be used to
identify event entries in event hifeed tracked update table
910, and the proper information from any child tables can be
retrieved. The feed items (e.g., feed tracked updates and
messages) can then be generated for display.

In one embodiment, the most recent feed items (e.g. 100
most recent) are determined first. The other feed items may
then be determined in a batch process. Thus, the feed item
that a user is most likely to view can come up first, and the
user may not recognize that the other feed items are being
done in batch. In one implementation, the most recent feed
items can be gauged by the event identifiers. In another
embodiment, the feed items with a highest importance level
can be displayed first. The highest importance being deter-
mined by one or more criteria, such as, who posted the feed
item, how recently, how related to other feed items, etc.

In one embodiment where the user subscription table 940
is used to dynamically create a news feed, the query would
search the subscription table, and then use the object IDs to
search the event hifeed tracked update table (one search for
each object the user is following). Thus, the query for the
news feed can be proportional to the number of objects that
one was subscribing to. The news feed table allows the
intermediate step of determining the object IDs to be done
at an earlier stage so that the relevant events are already
known. Thus, the determination of the feed is no longer
proportional to the number of object being followed.

In some embodiments, a news feed table can include a
pointer (as opposed to an event identifier) to the event hifeed
tracked update table for each event that is being followed by
the user. In this manner, the event entries can immediately be
retrieved without having to perform a search on the event
hifeed tracked update table. Security checks can be made at
this time, and the text for the feed tracked updates can be
generated.

X. Display of a Feed

Feeds include messages and feed tracked updates and can
show up in many places in an application interface with the
database system. In one embodiment, feeds can be scoped to
the context of the page on which they are being displayed.
For example, how a feed tracked update is presented can
vary depending on which page it is being displayed (e.g. in
news feeds, on a detail page of a record, and even based on
how the user ended up at a particular page). In another
embodiment, only a finite number of feed items are dis-
played (e.g. 50). In one implementation, there can be a limit
specifically on the number of feed tracked updates or
messages displayed. Alternatively, the limit can be applied
to particular types of feed tracked updates or messages. For
example, only the most recent changes (e.g. 5 most recent)
for a field may be displayed. Also, the number of fields for
which changes are displayed can also be limited. Such limits
can also be placed on profile feeds and news feeds. In one
embodiment, feed items may also be subject to certain
filtering criteria before being displayed, e.g., as described
below.

A. Sharing Rules for Feeds

As mentioned above, a user may not be allowed to see all
of the records in the database, and not even all of the records
of'the organization to which the user belongs. A user can also
be restricted from viewing certain fields of a record that the
user is otherwise authorized to view. Accordingly, certain
embodiments use access rules (also called sharing rules and

10

15

20

25

30

35

40

45

50

55

60

65

46

field-level security FLS) to ensure that a user does not view
a feed tracked update or message that the user is not
authorized to see. A feed of a record can be subject to the
same access rules as the parent record.

In one embodiment, access rules can be used to prevent
subscription to a record that the user cannot see. In one
implementation, a user can see a record, but only some of the
fields. In such instances, only items about fields that the user
can access may be displayed. In another embodiment, shar-
ing rules and FLS are applied before a feed item is being
added to a feed. In another embodiment, sharing rules and
FLS are applied after a feed item has been added and when
the feed is being displayed. When a restriction of display is
mentioned, the enforcement of access rules may occur at any
stage before display.

In some implementations, the access rules can be enforced
when a query is provided to a record or a user’s profile to
obtain feed items for a news feed of a user. The access rules
can be checked and cross-references with the feed items that
are in the feed. Then, the query can only return feed items
for which the user has access.

In other implementations, the access rules can be enforced
when a user selects a specific profile feed or record feed. For
example, when a user arrives on a home page (or selects a
tab to see the record feed), the database system can check to
see which feed items the user can see. In such an embodi-
ment, each feed item can be associated with metadata that
identifies which field the feed item is about. Thus, in one
embodiment, a feed tracked update is not visible unless the
associated record and/or field are visible to the user.

In one example, when a user accesses a feed of a record,
an access check can be performed to identify whether the
user can access the object type of the record. In one
implementation, users are assigned a profile type, and the
profile type is cross-referenced (e.g. by checking a table) to
determine whether the profile type of the user can see the
object type of the record.

In some embodiments, access to specific records can be
checked, e.g., after it has been determined that the user can
access the record type. Rules can be used to determine the
records viewable by a user. Such rules can determine the
viewable records as a combination of those viewable by
profile type, viewable due to a profile hierarchy (e.g. a boss
can view records of profile types lower in the hierarchy), and
viewable by manual sharing (e.g. as may be done by an
owner of a record). In one embodiment, the records view-
able by a user can be determined beforehand and stored in
a table. In one implementation, the table can be cross-
referenced by user (or profile type of a user) to provide a list
of the records that the user can see, and the list can be
searched to determine if the record at issue is among the list.
In another implementation, the table can be cross-referenced
by record to determine a list of the profile types that can
access the record, and the list can be searched to find out if
the requesting user is in the list. In another embodiment, the
records viewable by a user can be determined dynamically
at the time of the access check, e.g., by applying rules to data
(such as user profile and hierarchy information) obtained
from querying one or more tables.

In other embodiments, checks can be made as to whether
a user has access to certain fields of a record, e.g., after it has
been determined that the user can access the record. In one
aspect, the access check on fields can be performed on
results already obtained from the database, to filter out fields
that the user cannot see. In one embodiment, the fields
associated with retrieved feed items are determined, and
these fields are cross-referenced with an access table that

US 9,456,044 B2

47

contains the fields accessible by the user (e.g. using the
profile type of the user). Such an access table could also be
a negative access table by specifying fields that the user
cannot see, as can other access tables mentioned herein. In
one embodiment, the field level access table is stored in
cache at a server.

In one embodiment, a user can see the same fields across
all records of a certain type (e.g. as long as the user can see
the record). In one implementation, there is a field level
access table for each object type. The access table can be
cross-referenced by user (e.g. via profile type) or field. For
example, a field can be identified along with the profile types
that can see the field, and it can be determined whether the
user’s profile type is listed. In another example, the user can
be found and the fields to which the user has access can be
obtained. In another embodiment, the accessible fields could
be specified for each record.

Regarding profile feeds and news feeds, a first user may
perform an action on a record, and a feed tracked update may
be generated and added to the first user’s profile feed. A
second user who is allowed to follow the first user may not
have access rights to the record. Thus, the feed tracked
update can be excluded from a news feed of the second user,
or when the second user views the first user’s profile feed
directly. In one embodiment, if a user is already on the detail
page, then another access check (at least at the record level)
may optionally not be performed since a check was already
done in order to view the detail page.

In some embodiments, for profile feeds and news feeds,
the feed items can be organized by object type. IT can then
be determined whether the requesting user can access to
those object types. Other access checks can be done inde-
pendently or in conjunction with these access checks, as is
described above.

B. API Implementation

Various embodiments can implement the access rules in
various ways. In one embodiment, all recent feed items (or
more generally events) are retrieved from a feed that is ready
for display (e.g. after a feed generator performs formatting)
or a table. Then, bulk sharing checks can be applied on the
retrieved items. The viewable feed items of the most recent
set can then be displayed.

In another embodiment regarding a profile feed, for
non-VAD (view all data) users, i.e. users who can see
everything, certain functions can be overridden. In one
implementation, a FROM clause in a query can be overrid-
den to be a pipelined function, e.g., with different parts of the
query being operated on at the same time, but with different
operations of a pipeline. This pipeline function can be given
a row limit and the maximum number of sharing checks to
run. It can loop, selecting the next batch of rows, run sharing
checks against them in bulk, and pipe back any IDs which
are accessible. In one aspect, in nearly all cases, the user feed
can contain accessible IDs so the sharing checks can pass on
the first loop. However, it is possible the sharing may have
changed such that this user’s access is greatly reduced. In
one worst case, embodiments can run sharing checks on up
to the maximum number of sharing check rows (e.g. a
default 500) and then terminate the function with the IDs
which passed so far, possibly zero. Such an example
includes a low level person viewing profile feed of CEO.

In some embodiments, if the user has a small number of
subscriptions (e.g. <25), then embodiments can first run
sharing checks on those IDs and then drive the main query
from those accessible IDs, as opposed to a semi-join against
the subscription and running sharing checks on the resulting
rows. In other embodiments, FLS is enforced by building up

10

15

20

25

30

35

40

45

50

55

60

65

48
a TABLE CAST of the accessible field IDs from the cached
values. A main query can then join against this table to filter
only accessible fields.

XI. Filtering and Searching Feeds

It can be possible that a user subscribes to many users and
records, which can cause a user’s news feed to be very long
and include many feed items. In such instances, it can be
difficult for the user to read every feed item, and thus some
important or interesting feed items may not be read. In some
embodiments, filters may be used to determine which feed
items are added to a feed or displayed in the feed, even
though a user may be authorized to see more than what is
displayed. Section VILE also provides a description of
filtering based on criteria.

In one embodiment, an “interestingness” filter can func-
tion as a module for controlling/recommending which feed
tracked updates make it to the news feed when the number
of items that a user subscribes to is large. In one such
embodiment, a user can specify a filter, which is applied to
a user’s news feed or to record and profile feeds that the user
requests. Different filters can be used for each. For example,
processing can be done on the news feed to figure out which
feed tracked updates are the most relevant to the user. One
embodiment can use an importance weight and level/rank-
ing, as described herein. Other embodiments can include a
user specifying keywords for a message and specifying
which records or users are most important.

In one embodiment, a filter can be used that only allows
certain feed items to be added to a feed and/or to be
displayed as part of a feed. A filter can be used such that the
removal or non-addition of certain feed items automatically
occur for any new feed items after the filter criteria are
entered. The filter criteria can also be added retroactively.
The criteria of such a filter can be applied via a query
mechanism as part of adding a feed item to a table or
displaying a feed, as described in sections above. In various
embodiments, a user can directly write a query or create the
query through a graphical user interface.

FIG. 14 is a flowchart of a method 1400 for creating a
custom feed for users of a database system using filtering
criteria according to embodiments. Any of the following
steps can be performed wholly or partially with the database
system, and in particular by one or more processor of the
database system.

In step 1410, one or more criteria specifying which feed
items are to be displayed to a first user are received from a
tenant. In one embodiment, the criteria specifies which items
to add to the custom feed. For example, the criteria could
specify to only include feed items for certain fields of a
record, messages including certain keywords, and other
criteria mentioned herein. In another embodiment, the cri-
teria specifies which items to remove from the custom feed.
For example, the criteria could specify not to include feed
items about certain fields or including certain keywords.

In step 1420, the database system identifies feed items of
one or more selected objects that match the criteria. The feed
items can be stored in the database, e.g., in one or more of
the tables of FIG. 9A. In one embodiment, the one or more
selected objects are the objects that the first user is follow-
ing. In another embodiment, the one or more selected
objects is a single record whose record feed the first user is
requesting.

In step 1430, the feed items that match the criteria are
displayed to the first user in the custom feed. The generation
of text for a feed tracked update can occur after the identi-
fication of the feed items (e.g. data for a field change) and
before the display of the final version of the feed item.

US 9,456,044 B2

49

In one embodiment, the criteria is received before a feed
item is created. In another embodiment, the criteria is
received from the first user. In one aspect, the criteria may
only used for determining feeds to display to the first user.
In yet another embodiment, the criteria is received from a
first tenant and applies to all of the users of the first tenant.
Also, in an embodiment where a plurality of criteria are
specified, the criteria may be satisfied for a feed item if one
criterion is satisfied.

Some embodiments can provide mechanisms to search for
feed items of interest. For example, the feed items can be
searched by keyword, e.g., as entered by a user. As another
example, a tab (or other selection device) can show feed
items about or from a particular user. In one implementation,
only messages (or even just comments) from a particular
user can be selected.

In another embodiment, a user can enter search criteria so
that the feed items currently displayed are searched and a
new list of matching feed items is displayed. A search box
can be used to enter keywords. Picklists, menus, or other
mechanisms can be used to select search criteria. In yet
another embodiment, feed comments are text-indexed and
searchable. Feed comments accessibility and visibility can
apply on the search operation too.

In one embodiment, when a user performs a search of
feeds, there can be an implicit filter of the user (e.g., by user
ID). This can restrict the search to only the news feed of the
user, and thus to only record feeds and profile feeds that the
user is subscribed. In another embodiment, searches can also
be done across feeds of users and records that are not being
subscribed.

Besides searching for feed items that match a criteria, one
also could search for a particular feed item. However, in one
embodiment, a user cannot directly query a feed item or feed
comment. In such an embodiment, a user can query to obtain
a particular profile or record feed, and then navigate to the
feed item (e.g. as child of the parent feed). In another
embodiment, the relationship from a feed to its parent entity
(e.g. arecord or user profile) is uni-directional. That is a user
can navigate from the feed to the parent but not vice versa.

In one embodiment, a user can directly query the child
tables, e.g., comment table 930. Thus, a user could search for
comments only that user has made, or comments that contain
certain words. In another embodiment, a user can search for
a profile feed of only one user. In yet another embodiment,
a user can search for profile feeds of multiple users (e.g. by
specifying multiple user names or IDs), which can be
combined into a single feed.

XII. Maintaining Records for Follower’s Feeds

If every feed item is stored and maintained on a follower’s
feed or even in the profile and/or record feeds, the amount
of data to be stored could be massive, enough to cause
storage issues in the system. In one embodiment, the N (e.g.
50) most recent feed items for each feed are kept. However,
there can be a need to keep certain older feed items. Thus,
embodiments can remove certain feed items, while keeping
others. In other embodiments, old feed tracked updates may
be archived in a data store separate from where recent feed
items are stored.

In some embodiments, feeds are purged by a routine (also
called a reaper) that can remove items deemed not worthy to
keep (e.g. old items). Any underlying data structures from
which feed items are created can also be purged. In one
embodiment, the reaper can remove certain items when new
items are added (e.g. after every 5th item added). As another
example, feed items may be deleted synchronously during
the save operation itself. However, this may slow down each

20

25

30

40

45

55

50

save operation. In one embodiment, however, this may be
better than incurring a larger cost when the items are
removed at longer intervals. In another embodiment, the
reaper can run periodically as a batch process. Such routines
can ensure that a table size does not become too large. In one
aspect, a reaper routine can keep the event hifeed tracked
update table relatively small so the sharing checks are not
extremely expensive.

In various embodiments, the reaper can maintain a mini-
mum number (e.g. 50 or 100) of feed items per record,
maintain a minimum number of records per user (e.g. per
user ID), and not deleting feed items (or entire records)
which have comments against it. Such embodiments can
ensure that the detail page and profile page have sufficient
data to display in a feed. Note that the sharing checks for
feed queries can cut down the number of records further for
users with less access. Thus, the number of records finally
displayed for specific users can be significantly less than a
minimum number for a specific profile or record feed. In one
embodiment, a reaper deletes data that is older than a
specified time (e.g. 6 months or a year).

In one embodiment, the reaper can perform the deletion of
feed items (purging) as a batch up deletion. This can avoid
deletion of large number of records that may lead to locking
issues. In another embodiment, the reaper can be run often
so that the table does not become difficult to manage (e.g.
size-wise). In this way the reaper can work on a limited set
of records. In one implementation, the reaper may have logic
that deletes certain items (e.g. by an identification) from
tables (e.g. those in FIG. 9A), or sections of the tables.

XIII. Providing Information External to an Organization
in a Feed

For example, as noted above, an on-demand service
provider may be used to implement a customer relationship
management system. A customer relationship management
system may be used to manage an organization’s interac-
tions with customers, clients, and sales prospects. For
example, a customer relationship management system may
organize, automate, and synchronize an organization’s busi-
ness processes, including, for example, sales activities,
marketing, customer service, and technical support. Some of
the overall goals of a customer relationship management
system may be to find, attract, and win new clients, to
nurture and retain those clients that the organization already
has, to entice former clients back into a relationship with the
organization, and to reduce the costs of marketing and client
service.

For example, the organization may be a corporation,
Manufacturer X, which manufactures and sells computers.
Records in a database may be accounts of Manufacturer X.
For example, Company A and Company B may be two
companies that Manufacturer X sells computers to. Manu-
facturer X may have an account for Company A and an
account for Company B. A separate record may be associ-
ated with each account.

Further, for example, the Company A account may have
other records associated with it. For example, each order that
Company A places for computers with Manufacturer X may
be a separate record. Any time Company A has a warranty
claim or other issue with a computer may be another record
associated with the Company A account.

The records in the database may also not be related to a
specific client. For example, records may be associated with
new business opportunities, potential business partners,
component suppliers, shipping companies, and other service
providers.

US 9,456,044 B2

51

The records in the database may be accessible to a
plurality of users. The users may be persons employed by the
organization or somehow associated with the organization.
For example, a user may obtain information associated with
a record using a client machine that is able to communicate
with the on-demand service provider. For example, a user
interface that includes the information associated with the
record may be provided through a web-browser on the client
machine. The client machine may be able to access the
on-demand service via a network such as the Internet.

The organization may also wish to use the on-demand
service to obtain a variety of information regarding events
occurring outside of or external to the organization. Such
information may include, for example, information regard-
ing competitors, business plans of current customers, busi-
ness plans of possible future customers, and evolving gov-
ernmental regulatory issues potentially affecting the
organization. Such information may be available from a
number of different sources. For example, on the Internet,
such information may be available in news articles, blog
posts, analyst reports, and other web pages. Such informa-
tion may be publicly available, free of charge, for example.
Access to some information may require a subscription,
membership, or other fee, for example.

The organization may include many different depart-
ments, such as a sales/marketing department, a customer
service department, a product development department, and
a corporate management department, for example. Each
department may be interested in specific information exter-
nal to the organization, and some information external to the
organization may be of interest to all departments or persons
within the organization. The sales/marketing department
may want to know the business plans of a customer of the
organization so that the department may predict future needs
of'the customer. The customer service department may want
to know any problems or issues related to products sold by
the organization so that they may be prepared for questions
from customers. The product development department may
want to know features of products that consumers like as
well as features that consumers do not like; this would allow
the product development department to design products that
appeal to a number of consumers. The corporate department
may want to know actions of competitors in an industry,
such as mergers and acquisitions of the competitors, so that
effective corporate strategies can be implemented. Further,
outside information of interest to all departments or persons
in the organization may include information regarding an
initial public offering of the organization, for example. One
or more embodiments may provide such information that is
external to the organization.

One example of an Internet service that allows an indi-
vidual person to obtain updates regarding a news matter or
other issue is Google Alerts. Google Alerts is a service that
allows a person to monitor a developing news story, to
monitor a competitor or industry, to obtain the latest news on
a celebrity or event, or to monitor a favorite sports team, for
example. With Google Alerts, a person provides a search
term or terms and an e-mail address at which the person
wishes to receive messages. The person may also specify
information databases or sources that Google Alerts
searches, how frequently messages are to be received from
Google Alerts, and the volume of messages to be received.
The information databases or sources that Google Alerts
searches may include all or some of news sources, blogs,
update sources, video sources, and discussions. The volume

10

15

20

25

30

35

40

45

50

55

60

65

52

of messages to be received may be all messages, regardless
of the strength of the search results, or only the messages
that include the best results.

Another example of an Internet service that allows an
individual person to obtain updates regarding a news matter
or other issue is Technorati™. Technorati™ allows a person
to monitor information in blogs, posts, and other social
media Internet sites.

FIGS. 15, 16, and 17 show flow diagrams of methods
related to providing information external to an organization
to persons within the organization. FIGS. 15, 16, and 17
show flow diagrams of methods 1500, 1600, and 1700,
respectively. In some embodiments, the methods 1500,
1600, and 1700 may be performed at one or more servers,
such as a server configured to provide services via an
on-demand service environment. The server may have
access to a database, such as a multitenant database acces-
sible to a plurality of tenants in the on-demand service
environment. Additional details regarding servers, data-
bases, and on-demand service environments according to
various embodiments disclosed herein are discussed in
greater detail above.

FIG. 15 shows a flow diagram of a method 1500 for
providing information feed alerts, performed in accordance
with one embodiment. The method 1500 may provide infor-
mation feed alerts that include, for example, information
from outside of or external to an organization in an infor-
mation feed associated with a record.

At block 1502, a message relating to a record stored in a
database is received. The record stored in the database may
be, for example, an account of the organization that the
organization sells products to. As another example, the
record stored in the database may be a case relating to a
contract that the organization is negotiating.

In some embodiments, the message is received from a
provider. The provider, for example, may be a third party
aggregator or other Internet service that compiles informa-
tion available on the Internet regarding news information of
interest to an organization. A provider may search the
Internet with an Internet search engine for occurrences of
information of interest to an organization and compile the
information in a message.

One example of a provider is Google Alerts, described
above. Another example of a provider is Technorati™, also
described above. Many other providers may also be used in
the method 1500. For example, one possible provider is a
service that aggregates information that is posted on Twitter.
The use of some providers may be publicly available free of
charge. Other providers may provide services as part of a
subscription to or other business arrangement with the
organization.

The message may be received by one or more servers
associated with an on-demand service provider. In some
embodiments, the message is received in the format in which
the provider provides the message. For example, the mes-
sage may be received as an e-mail message, a HTTP get
message, a HT'TP post message, a XML message, a SOAP
message, or a RSS feed message. Some providers allow for
messages to be received in different formats. Other providers
may provide messages only in a single format, such as an
e-mail message.

Some message formats may be structured according to
rules or protocols used in the computing industry. For
example, a XML message is any message that is XML
formatted. XML, or Extensible Markup Language, is
markup language for documents containing structured infor-
mation. Structured information contains both content

US 9,456,044 B2

53

(words, pictures, etc.) and some indication of what role that
content plays (for example, content in a heading has a
different meaning from content in a footnote, which means
something different than content in a figure caption, etc.). A
markup language is a mechanism to identify structures in a
message, and XML defines a standard way to add markup to
a message. XML is commonly used in interchanging data
between systems over the Internet. For example, XML is
widely used for the representation of arbitrary data struc-
tures in web-based services.

As another example, a SOAP message is any message that
is SOAP formatted. SOAP is a XML-based messaging
protocol. It defines a set of rules for structuring messages.
SOAP relies on XML for its message format, and usually
relies on other Application Layer protocols. A SOAP mes-
sage is encoded as a XML document with a standard format
containing the following elements: an Envelope element that
identifies the XML document as a SOAP message; a Header
element that contains header information; a Body element
that contains call and response information; and, a Fault
element containing errors and status information

At block 1504, the provider of the message is identified.
As noted above, the provider may be a third party aggregator
or other Internet service that compiles information available
on the Internet. For example, one possible provider is
Google Alerts.

In some embodiments, the provider of the message is
identified by information associated with the message. For
example, if the message is received in the form of an e-mail
message, the provider of the e-mail message may be iden-
tified by e-mail address of the sender of the e-mail. As
another example, if the message is received as a RSS feed
message, the provider of the RSS feed message may be
identified by an identifier of the sender of the RSS feed. As
yet another example, if the message is received as a XML
message, the provider of the XML message may be identi-
fied in a markup of the message. Other information associ-
ated with the message that may be used to identify the
provider includes an identifier included in the message or a
digital signature that may be associated with the message. In
some embodiments, the identity of the provider of the
message may be needed in order to parse the information in
the message, as described below.

At block 1506, an unparsed data block in the message is
selected. In some embodiments, a data block may include
information relating to the record from to a news article, a
blog post, an analyst report, or a web page. For example, the
message may include a data block that was obtained from an
article in the New York Times. The data block may include
the following data: the source (i.e., The New York Times) of
the article, the URI of the article, the author of the article, the
publication date of the article, the publication time of the
article, the title of the article, a rating given by persons who
have read or reviewed the article, a location associated with
the article, and the language that the article is written in.

For example, if the provider uses an Internet search
engine to search the Internet and provides messages includ-
ing the results of the search, each separate search result may
be considered a data block. For example, a provider may
provide a message including a data block from The New
York Times and a data block from the Wall Street Journal,
with both data blocks concerning the same news event. As
another example, a provider may provide a message includ-
ing a data block concerning a news event from the New York
Times and a data block concerning a second news event
from the New York Times. Both of these data blocks may be
separate data blocks. In some embodiments, the message

10

20

35

40

45

55

54

includes one or more data blocks. In the case of a RSS feed
message, a data block may be an update from a website, for
example.

At block 1508, the selected data block is parsed into items
having specified types. An embodiment of a parsing method
is described in further detail in FIG. 16. Parsing is a method
of analyzing an input sequence in order to determine the
structure of the input sequence. For example, if the message
is an e-mail, the text of the e-mail may be analyzed and
portions of the text separated into items having specified
types.

In some embodiments, messages provided by a provider
are in the same format. For example, all of the e-mail
messages from Provider X may have the same e-mail
format. Because the format of an e-mail message from
Provider X is regular, computer code may be written to parse
the data in the message. E-mail messages from a different
provider, Provider Y, may be in a different e-mail format
than the e-mail messages from Provider X. Different com-
puter code implementing different parsing methods may be
needed for different providers, depending on the format of
the messages from the providers.

In some embodiments, a data block may be separated into
items having specified types without a parsing method. For
example, some providers may provide messages in an
explicitly structured format, such as a XML message or a
SOAP message. For a message in an explicitly structured
format, the data block may be separated into items based on
the formatting of the message. Different computer code to
separate a data block into items may be needed for different
explicitly structured formats, depending on the structured
format.

In some embodiments a data block in the message
includes all or some of the following data: the source of the
data block, the uniform resource indicator (URI) from which
the data block was obtained, the author of the information
associated with the data block, a publisher of the information
associated with the data block, a date and/or time associated
with the information associated with the data block, a title
associated with the information associated with the data
block, a user rating of the information associated with the
data block, and a language of the information associated
with the data block. The specified types correspond to data
in the data block, in some embodiments. All or some of the
data in the data block are recorded as items.

In some embodiments, the data blocks in the message
depend on the databases or sources that the provider
accesses. For example, the message may include data blocks
from any sources on the Internet that would be accessed by
an Internet search engine of the provider. As another
example, if the provider searches only Internet sites related
to newspapers and news periodicals, the message may
include news information from The New York Times, The
Wall Street Journal, and Newsweek. As another example, if
the provider searches only Twitter posts, the message may
include only posts made to Twitter. As yet another example,
if the provider searches only blogs, the messages may
include only blog entries and posts.

At block 1510, a source associated with the data block is
identified. In some embodiments, the parsing method yields
an item that includes the source of the data block.

In some embodiments, the source of the data block is
identified as the publisher of the information in the data
block. For example, the source may be The New York
Times, The Wall Street Journal, or Newsweek. In other
embodiments, the source of the data block may be the author

US 9,456,044 B2

55

of the information associated with the data block. For
example, the source may be an individual or group of
individuals.

At block 1512, a determination is made as to whether the
source associated with the data block is included on a list of
sources. In some embodiments, this list of sources includes
sources from which information feed alerts are not desired.
For example, if the organization provides news oriented web
pages, the organization may not want to receive a data block
in the message from its own web pages. As another example,
a source may be deemed unreliable or a source may provide
information with a certain bias that is not desired. In some
embodiments, when the source is included on a list of
sources, a data object based on the items is not stored.

Atblock 1514, a data object based on the items is created.
A data object is a representation of structured data. A data
object can be manipulated by the commands of a program-
ming language. For example, a data object may include
fields and values in the fields.

In some embodiments, the data object includes one or
more items from the data block. For example, the data object
may include a title associated with news information, a
source of the news information, and a URI providing a
location of the news information.

At block 1516, a determination is made as to whether the
any unparsed data blocks in the message remain. As noted
above, the message may include one or more data blocks. In
some embodiments, all of the data blocks in the message are
parsed. In some embodiments, a portion of the data blocks
in the message are parsed.

At block 1518, the data objects are processed. In some
embodiments, the data objects are processed based on the
items in the data objects. For example, a certain source of
data objects may be deemed more reliable or more important
than other sources of data objects. Data objects from this
source may be placed ahead of data object from the other
sources in the information feed. Many other processing
methods of data objects are possible.

In some embodiments, processing a data object includes
deleting a data object that is the same as or similar to another
data object. For example, data objects having the same or
similar URIs may be the same or similar. The provider may
include a data block in a message on one day, and then
include a data block having the same or a similar URI on the
next day.

In some embodiments, a URI associated with a newly
created data object is identified. Then, the URI associated
with the newly created data object is compared to the URI
associated with a previously created data object to determine
when the URIs are the same or similar. When the URIs are
the same or similar, the newly created data object is deleted.
This prevents data objects that have previously been
included in the information feed from being included in the
information feed again.

In some embodiments, processing a data object includes
analyzing user information associated with the data object,
as described further, below.

At block 1520, the data objects are provided in an
information feed associated with the record in a database.

In some embodiments, the information feed is received by
a client machine, the client machine including a display
device. The client machine may then display the information
feed to a user interface in a web browser.

FIGS. 18-20 show images of user interfaces presented on
a computing device, in accordance with one or more
embodiments. The user interfaces in FIGS. 18-20 are shown
as being displayed in a web browser. A user interface may

5

10

15

20

25

30

35

40

45

50

55

60

65

56

be associated with a user or an account, for example. A user
interface may also be associated with a record stored in a
database of the on-demand service provider. In some
embodiments, the user interfaces may be used in conjunc-
tion with the method 1500 for providing information feed
alerts shown in FIG. 15.

In FIG. 18, data objects 1802, 1804, and 1806 are dis-
played in the information feed 1810 as part of a user
interface 1800. The information feed 1810 is associated with
a user 1811. The items included in one of the data objects,
data object 1802, are an account associated with the data
block 1812 (i.e., Apple computers), a provider of the data
block 1814 (i.e., Google Alerts), a title associated with the
information 1816 (i.e., Biz Break: Apples iPhone 4: A
free-bumper fix for antenna weak spot), and a URI from
which the data block was obtained 1818 (i.e., www.mer-
curynews.com).

In FIG. 19, data objects 1902, 1904, 1906, 1908 and 1910
are displayed in the information feed 1920 as part of a user
interface 1900. The information feed 1920 is associated with
an account 1911. Data objects 1902, 1904, 1906, 1908 and
1910 all have the same provider (i.e., Google Alerts). Data
objects 1902, 1904, 1906, and 1910 all have titles associated
with the same subject (i.e., Apple), but have different sources
of the data blocks from which the data objects were created.
Data object 1908 has a title associated with a different
subject (i.e., PC World) than the other data objects.

In FIG. 20, data objects 2002, 2004, and 2006 are dis-
played in the information feed 2010 as part of a user
interface 2000. The information feed 2010 is associated with
a user 2011. In some embodiments of method 1500, the user
may a post comment regarding a data object, start a con-
versation about a data object, or rank a data object. For
example, a user may rank a data object on a scale of one to
three based on the importance of the data object to the
organization. For data object 2004, the user posted a com-
ment 2012 regarding the data object.

In some embodiments of the method 1500, processing a
data object at block 1518 includes analyzing user informa-
tion associated with the data object. For example, when
users rank a data object, these ranking may be received by
the one or more server computers. Then, when new data
blocks are received in a message at block 1502, a new data
object associated with a highly ranked data object may be
provided in the information feed before other new data
objects. Alternatively, a data object associated with a highly
ranked data object may be highlighted, for example, in a
different color or bolded text, in the information feed.
Further, different weights may be put on the rankings of data
objects by certain users depending on the position of the user
in the organization when providing data objects in the
information feed. For example, the ranking of a data object
by a lead manager of an organization may be given more
weight than the ranking of a data object by an administrative
assistant, for example.

FIG. 16 shows a flow diagram of a method 1600 for
parsing data in a data block, performed in accordance with
one embodiment. The method 1600 may identify data in a
data block and record the data as items. This may performed
for all of the unprocessed data in the data block.

The parsing method 1600 may vary depending on the
format of the message provided by a provider, as noted
above. The parsing method 1600 may also vary depending
on the data and the format of the data that the provider
includes in a data object. If the messages, and the data blocks
in the messages, from a certain provider are all formatted in

US 9,456,044 B2

57

a similar manner, the same method can be used to parse the
data blocks in the messages received from that provider.

At block 1602, data having a specified type in the data
block are identified. For example, data having a specified
type may be identified due to the parsing method operating
based on the format of a message provided by a specific
provider and the data expected in the data block. For
example, if a data block in a message from a particular
provider includes a source, a title, and an author, in this
order, the method may identify the data of the specified types
in the data block. In some embodiments, as noted above,
specified types include a source, a URI, an author, a pub-
lisher, a date, a time, a title, a user rating, a location, and a
language.

At block 1604, unprocessed data in the data block is
selected. Unprocessed data includes data that has not been
recorded as an item. For example, unprocessed data may be
selected due to the parsing method operating based on the
format of a message provided by a specific provider and the
data expected in the data block.

At block 1606, the selected data is recorded as an item.
For example, unprocessed data may be recorded due to the
parsing method operating based on the format of a message
provided by a specific provider and the data expected in the
data block. For example, if the selected data is of the
specified type of a URI, the selected data is recorded as an
item, a URI.

Atblock 1608, a determination is made as to whether any
unprocessed data in the data block remain. In some embodi-
ments, all of the data in the data block are processed. In other
embodiments, one or more of the data in the data block are
processed. For example, the data block may include a
number of data having specified types. However, the orga-
nization may only be interested in providing users with the
title and the URI associated with the data block, for example.
In this case, the title and the URI associated with the data
block would be recorded as items, but the other data in the
data block would not be recorded. Further, some of the data
in a data block may not be processed in the parsing method
1600. For example, in some embodiments, images associ-
ated with a data block are ignored and not processed.

FIG. 17 shows a flow diagram of a method 1700 for
signing up to receive information feed alerts, performed in
accordance with one embodiment. The method 1700 may
receive information related to desired information feed
alerts, send this information to a provider, receive a confir-
mation message from the provider, and send a confirmation
response to the provider.

In some embodiments, the information feed alerts signup
method 1700 may be performed by a user. For example, a
manager in an organization may think that it is beneficial for
everyone in the organization to be aware of a possible initial
public offering of the organization. The manager may signup
for information feed alerts that will be provided to the
information feed of all persons in the organization. As
another example, the head of the customer service depart-
ment of an organization may think that it is beneficial for
persons in the department to be aware of issues related to a
product that the organization recently released. The head of
the department may signup for information feed alerts that
will be provided to the information feed of all persons in the
department. In some embodiments, a user needs certain
permissions or access to certain features to signup to receive
information feed alerts.

FIGS. 21-28 show images of user interfaces presented on
a computing device, in accordance with one or more
embodiments. Some of the user interfaces in FIGS. 21-28

10

15

20

25

30

35

40

45

50

55

60

65

58

are shown as being displayed in a web browser. In some
embodiments, the user interfaces may be used in conjunc-
tion with the method 1700 for signing up to receive infor-
mation feed alerts shown in FIG. 17.

In FIG. 21, the user interface 2100 includes an informa-
tion feed alert signup region 2102. The user interface 2100
is associated with an account 2104. A selection has been
made by a user in the Chatter News Alert Status drop-down
menu 2106 to Sign Up 2108 to receive information feed
alerts.

In some embodiments, the information feed alerts signup
method 1700 may be performed automatically. For example,
any time a new product is released by the organization, the
service department may automatically be signed up to
receive information feed alerts related to the product.

At block 1702, parameters relating to a record stored in a
database are received. As discussed with respect to FIG. 15,
in some embodiments, the parameters may include all or
some of a provider, a search term, information databases or
sources to be searched, how frequently messages are to be
received from a provider, and the volume of messages to be
received from the provider. The search term may be a single
word, multiple words, or multiple words joined with Bool-
ean operators, as would be provided to an Internet search
engine, for example. The search term is related to the
information of interest to the organization, in some embodi-
ments.

In FIG. 22, the search term “Orbitz” is entered in the
Google Alert Search Term(s) text box 2202 of user interface
2200. In some embodiments, the parameters further include
user accounts or groups of user accounts designated to
receive the data objects in the information feed. A group of
user accounts may include the user accounts of all persons
in the sales department of the organization, for example. As
another example, the user accounts of persons working on a
special project may be included in the parameters. With the
user interface 2200, all user accounts following the account
2104 would be signed up to receive the information feed
alerts, for example.

As described above, in some embodiments, some sources
may exist from which information feed alerts are not
desired. These sources, for example, may be listed in a list
of sources. In FIG. 23, the URI “www.nytimes.com” is
included in text box 2302 of user interface 2300. With
“www.nytimes.com” listed in text box 2302, data objects
with the source of “www.nytimes.com” would not be stored
in the method 1500, as described above. In text box 2302, all
sources from which information feed alerts are not desired
may be listed. Further, user interface 2300 includes a text
box 2304 in which the number of data objects per message
may be limited to a certain number. For example, only one
or two data objects per message may be desired.

At block 1704, a selection of a provider of messages is
received. As noted above, a provider of messages may be a
third party aggregator or other Internet service that compiles
information available on the Internet regarding new infor-
mation of interest to an organization. In the user interface
2200 in FIG. 22, Google Alerts is already specified as the
provider at 2204. In some embodiments, a user may be able
to select any of a number of possible providers, as noted
above.

At block 1706, a web services end-point for the messages
is determined. In some embodiments, the web services
end-point is automatically determined. The web services
end-point is the point at which messages from the provider
are to be received. For example, if the messages are to be
received in the form of e-mail messages, the web services

US 9,456,044 B2

59

end-point may include an e-mail address designating an
e-mail mailbox to receive the e-mail messages. As another
example, if the messages are received in the form of RSS
feed messages, the web services end-point may include a
RSS reader address designating an address to receive the
RSS feed messages.

In some embodiments, after the information related to the
desired information feed alert is provided to the user inter-
face, the users may save the information. In the user inter-
face 2400 in FIG. 24, the user has saved the information
related to the desired information feed alert at 2402.

At block 1708, a signup request is sent to the provider. In
some embodiments, the signup request may be in any form
that the provider accepts. For example, some providers may
accept a signup request in the form of an e-mail message.
The signup request may include all of the information
required by the provider to signup to receive messages from
the provider. For example, the signup request may include
the parameters relating to the record and/or the web services
end-point for the messages.

At block 1710, a confirmation message is received from
the provider. In some embodiments, the provider sends a
confirmation message to confirm that messages have been in
fact requested.

At block 1712, the confirmation message is parsed into
items having specified types. In some embodiments, the
confirmation message includes an address to which to send
a confirmation response and the parameters that were sent to
the provider in the signup request. In some embodiments,
the confirmation message is parsed with a method similar to
the parsing method described with respect to the method
1600 in FIG. 16. For example, if the confirmation requires
a confirmation response, the address to which to send a
confirmation response may be identified as a specific type,
selected, and then recorded as an item.

At block 1714, a confirmation response is sent to the
provider. In some embodiments, the provider may require a
confirmation that a user did intend to signup to receive
messages. For example, to confirm that the user did intend
to signup to receive messages, the provider may require a
confirmation response from the user before messages will be
sent.

At block 1716, a mechanism for canceling the signup
request is provided. In some embodiments, the confirmation
message may include a mechanism for canceling the signup
request to receive messages. For example, the mechanism
for canceling the signup request may be a URI that when
accessed cancels the signup request. When the confirmation
message is parsed at block 1712, this information may be
recorded as an item. In the user interface 2500 in FIG. 25,
a URI to cancel the information feed alerts is provided at
2502.

In some embodiments, after the signup method for infor-
mation feed alerts is completed, the information feed alerts
may be shown as active on a user interface. In the user
interface 2600 in FIG. 26, the Chatter News Alert Status
drop-down menu 2106 indicates an active status.

In some embodiments, the information feed alerts signup
may be cancelled using the Chatter News Alert Status
drop-down menu 2106. In the user interface 2700 in FI1G. 27,
a selection has been made by a user in the Chatter News
Alert Status drop-down menu 2106 to Cancel 2702 the
information feed alerts.

In some embodiments, other setting may be provided
during the method 1700 for signing up to receive informa-
tion feed alerts. For example, in the user interface 2800 in
FIG. 28, text boxes and/or drop-down menus 2802, 2804,

10

15

20

25

30

35

40

45

50

55

60

65

60
2806, and 2814 may be used to further specify e-mail
message parameters when e-mail is the form in which
messages are provided by a provider. Check boxes 2808,
2810, and 2812 in the user interface 2800 may be used to
specify other e-mail message parameters.

Many variations of the methods 1500, 1600, and 1700
may exist. For example, the method 1500 for providing
information feed alerts may not include parsing the data
block into items having specified types at block 1508, as
described above. Also, in some embodiments of the method
1500, the data objects may not be processed at block 1518.

As another example, for the method 1700 for signing up
to receive information feed alerts, some providers may not
send a confirmation message. If the provider does not send
a confirmation message, a confirmation message would not
be received at block 1710. With no confirmation message,
there would be no parsing the confirmation message at block
1712 and no sending a confirmation response at block 1714.

The user interfaces associated with the methods 1500,
1600, and 1700 may also vary, depending on the specific
implementation of the method.

The specific details of the specific aspects of the present
invention may be combined in any suitable manner without
departing from the spirit and scope of embodiments of the
invention. However, other embodiments of the invention
may be directed to specific embodiments relating to each
individual aspects, or specific combinations of these indi-
vidual aspects.

While examples of the present invention are often
described herein with reference to an embodiment in which
an on-demand enterprise services environment is imple-
mented in a system having an application server providing
a front end for an on-demand database service capable of
supporting multiple tenants, the present invention is not
limited to multi-tenant databases nor deployment on appli-
cation servers. Embodiments may be practiced using other
database architectures, i.e., ORACLE®, DB2® by IBM and
the like without departing from the scope of the embodi-
ments claimed.

It should be understood that the present invention as
described above can be implemented in the form of control
logic using hardware and/or using computer software in a
modular or integrated manner. Other ways and/or methods
to implement the present invention are possible using hard-
ware and a combination of hardware and software.

Any of the software components or functions described in
this application may be implemented as software code to be
executed by a processor using any suitable computer lan-
guage such as, for example, Java, C++ or Perl using, for
example, conventional or object-oriented techniques. The
software code may be stored as a series of instructions or
commands on a computer readable medium for storage
and/or transmission, suitable media include random access
memory (RAM), a read only memory (ROM), a magnetic
medium such as a hard-drive or a floppy disk, or an optical
medium such as a compact disk (CD) or DVD (digital
versatile disk), flash memory, and the like. The computer
readable medium may be any combination of such storage or
transmission devices. Computer readable media encoded
with the software/program code may be packaged with a
compatible device or provided separately from other devices
(e.g., via Internet download). Any such computer readable
medium may reside on or within a single computer program
product (e.g. a hard drive or an entire computer system), and
may be present on or within different computer program
products within a system or network. A computer system

US 9,456,044 B2

61

may include a monitor, printer, or other suitable display for
providing any of the results mentioned herein to a user.

While various embodiments have been described herein,
it should be understood that they have been presented by
way of example only, and not limitation. Thus, the breadth
and scope of the present application should not be limited by
any of the embodiments described herein, but should be
defined only in accordance with the following and later-
submitted claims and their equivalents.

What is claimed is:

1. A system comprising:

a database system implemented using a server system, the

database system configurable to cause:

maintaining, using the database system, a database
storing a plurality of records pertaining to business
operations of an organization;

processing, using the database system, a message
received from an information service provider in
accordance with one or more parameters of a request
for information, the information service provider
being external to the organization, the one or more
parameters indicating information of interest with
respect to the organization, the message comprising
data from at least one source external to the organi-
zation;

processing the message data to obtain a plurality of
news items;

creating or updating, using the database system, one or
more data objects in a database to identify informa-
tion of the news items, the information comprising
an identity of the at least one source;

generating, based at least on the identity of the at least
one source, a first feed item comprising at least a
portion of the information of the news items, the first
feed item being identifiable in association with a first
one of the records; and

sharing the first feed item in a feed of a social net-
working system, the feed configured to be displayed
in a user interface on a display device and configured
to include one or more updates related to the first
record.

2. The system recited in claim 1, wherein the first feed
item is shared in feeds of designated users.

3. The system recited in claim 2, wherein the designated
users are identified as followers of an entity associated with
the organization, the entity being one of: a user, a record, or
a customer relationship management (CRM) object.

4. The system recited in claim 2, wherein the designated
users are identified in association with a signup operation to
receive messages from the information service provider in
accordance with the one or more parameters.

5. The system recited in claim 1, wherein the first feed
item is shared in one or more designated feeds comprising
one or more of: a feed of the organization, a feed of a
department of the organization, a feed accessible by users of
the organization, a feed of a user of the organization, a feed
of a group of users of the organization, a feed of a record,
a feed of a CRM object of the organization, a feed of a
product of the organization, or a feed of a service of the
organization.

6. The system recited in claim 1, wherein the user
interface is configured to receive user input from one or
more users regarding the first feed item to be displayed in
association with the first feed item in the feed, the user input
comprising one or more of: a post, a comment, or a ranking
indicating importance of the first feed item with respect to
the organization.

10

15

20

25

30

35

40

45

50

55

60

65

62

7. The system recited in claim 1, wherein the one or more
parameters identify one or more of: a provider of messages,
an information source, a frequency of message sending from
a provider, a volume of messages from a provider, a search
term, a recipient of data objects, or a group of recipients of
data objects.

8. The system recited in claim 1, wherein the message is
received via a network from a web services end-point
associated with the information service provider.

9. The system recited in claim 1, wherein the message
data comprises one or more of: news article data, blog data,
or web page data.

10. The system recited in claim 1, wherein the message is
one of: an e-mail message, an HTTP get message, an HTTP
post message, an XML message, a SOAP message, or an
RSS feed message.

11. The system recited in claim 1, wherein the one or more
parameters are search parameters for information relating to
the first record.

12. The system recited in claim 1, wherein the first feed
item comprises one or more of: a title associated with the
message data, a source of the message data, or a uniform
resource indicator providing a location of the message data.

13. The system recited in claim 1, wherein:

the user interface provides access to an on-demand ser-

vice available to a plurality of organizations, and

a client machine is associated with a first one of the

organizations, the client machine comprising the dis-
play device.

14. The system recited in claim 1, wherein the database
system is accessible to a plurality of tenants in a multi-tenant
database environment.

15. The system recited in claim 1, wherein:

the message comprises a plurality of data blocks, the data

blocks comprising at least some of the message data,
and

processing the message data to obtain the news items

comprises:

identifying the information service provider,

determining that one of the data blocks is unparsed,

selecting the unparsed data block, and

parsing, based on an identity of the information service
provider, data in the unparsed data block into data
items having specified types.

16. The system recited in claim 15, wherein a specified
type is one of: a source, a uniform resource indicator, an
author, a publisher, a date, a time, a title, a user rating, a
location, or a language.

17. A computer program product comprising computer-
readable program code to be executed by one or more
processors when retrieved from a non-transitory computer-
readable medium, the program code comprising instructions
configurable to cause:

maintaining a database in a database system storing a

plurality of records pertaining to business operations of
an organization;

processing, using the database system, a message received

from an information service provider in accordance
with one or more parameters of a request for informa-
tion, the information service provider being external to
the organization, the one or more parameters indicating
information of interest with respect to the organization,
the message comprising data from at least one source
external to the organization;

processing the message data to obtain a plurality of news

items;

US 9,456,044 B2

63

creating or updating, using the database system, one or
more data objects in a database to identify information
of the news items, the information comprising an
identity of the at least one source;

generating, based at least on the identity of the at least one

source, a first feed item comprising at least a portion of
the information of the news items, the first feed item
being identifiable in association with a first one of the
records; and

sharing the first feed item in a feed of a social networking

system, the feed configured to be displayed in a user
interface on a display device and configured to include
one or more updates related to the first record.

18. The computer program product recited in claim 17,
wherein the first feed item is shared in feeds of designated
users.

19. A method comprising:

maintaining, using a database system implemented using

a server system, a database storing a plurality of records
pertaining to business operations of an organization;
processing, using the database system, a message received

from an information service provider in accordance
with one or more parameters of a request for informa-
tion, the information service provider being external to
the organization, the one or more parameters indicating
information of interest with respect to the organization,
the message comprising data from at least one source
external to the organization;

64

processing the message data to obtain a plurality of news

items;

creating or updating, using the database system, one or

more data objects in a database to identify information
of the news items, the information comprising an
identity of the at least one source;

generating, based at least on the identity of the at least one

source, a first feed item comprising at least a portion of
the information of the news items, the first feed item
being identifiable in association with a first one of the
records; and

sharing the first feed item to in a feed of a social

networking system, the feed configured to be displayed
in a user interface on a display device and configured
to include one or more updates related to the first
record.

20. The method recited in claim 19, wherein the first feed
item is shared in one or more designated feeds comprising
one or more of: a feed of the organization, a feed of a
department of the organization, a feed accessible by users of
the organization, a feed of a user of the organization, a feed
of a group of users of the organization, a feed of a record,
a feed of a CRM object of the organization, a feed of a
product of the organization, or a feed of a service of the
organization.

